Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4x=3y, 5y=3z=>\(\frac{x}{3}=\frac{y}{4};\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{x}{9}=\frac{y}{12};\frac{y}{12}=\frac{z}{20}\Rightarrow\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)
áp dụng tính chất của dãy tỉ số bằng nhau ta có;
\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)
suy ra:
\(\frac{x}{9}=3\Rightarrow x=27\)
\(\frac{y}{12}=3\Rightarrow y=36\)
\(\frac{z}{20}=3\Rightarrow z=60\)
4x = 3y => \(\frac{x}{3}=\frac{y}{4}\) => \(\frac{x}{9}=\frac{y}{12}\) (1)
5y = 3z => \(\frac{y}{3}=\frac{z}{5}\) => \(\frac{y}{12}=\frac{z}{20}\) (2)
(1);(2) => \(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2x-3y+z}{2.9-3.12+20}=\frac{6}{2}=3\)
=> x = 3.9 = 27; b = 3.12 = 36; c = 3.20 = 60
\(\Rightarrow\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{5}}=\frac{z}{\frac{1}{3}}\)
+ Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{5}}=\frac{z}{\frac{1}{3}}=\frac{x+y-z}{\frac{1}{2}+\frac{1}{5}-\frac{1}{3}}=\frac{-44}{\frac{11}{30}}=-120\)
Suy ra \(\frac{x}{\frac{1}{2}}=-120\Rightarrow x=-60\)
\(\frac{y}{\frac{1}{5}}=-120\Rightarrow y=-24\)
\(\frac{z}{\frac{1}{3}}=-120\Rightarrow z=-40\)
Vậy \(x=-60;y=-24;z=-40\)
Chúc bạn học tốt !!!
Ta có:
\(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\left(1\right)\)
\(5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{y}{14}=\frac{z}{10}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\) và \(3x+7y+5z=30\)
Áp dụng t/c DTSBN ta có:
\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{3x+7y+5z}{3.21+7.14+5.10}=\frac{30}{211}\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{21}=\frac{30}{211}\Rightarrow x=\frac{630}{211}\\\frac{y}{14}=\frac{30}{211}\Rightarrow y=\frac{420}{211}\\\frac{z}{10}=\frac{30}{211}\Rightarrow z=\frac{300}{211}\end{cases}}\)
Vậy ...
hok tốt!
Ta có: \(\hept{\begin{cases}2x=3y\\5y=7z\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{3}=\frac{y}{2}\\\frac{y}{7}=\frac{z}{5}\end{cases}\Rightarrow}\hept{\begin{cases}\frac{x}{21}=\frac{y}{14}\\\frac{y}{14}=\frac{z}{10}\end{cases}\Rightarrow}\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
....................................................................
b tự làm nốt nhé
chúc bạn học tốt~
\(2x=3y\)\(\Rightarrow\)\(\frac{x}{3}=\frac{y}{2}\)hay \(\frac{x}{21}=\frac{y}{14}\)
\(5y=7z\)\(\Rightarrow\)\(\frac{y}{7}=\frac{z}{5}\)hay \(\frac{y}{14}=\frac{z}{10}\)
suy ra: \(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)hay \(\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{3x}{63}=\frac{7y}{98}=\frac{5x}{50}=\frac{3x+7y-5z}{63+98-50}=\frac{30}{111}=\frac{10}{37}\)
đến đây bn tính tiếp nhé
\(a,4x=5y\:\Rightarrow\frac{x}{5}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{12}\)
\(4y=6z\Rightarrow\frac{y}{6}=\frac{z}{4}\Rightarrow\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{x}{15}=\frac{2y}{24}=\frac{3z}{24}\)
\(\Rightarrow\frac{x-2y+3z}{15-24+24}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{5}{15}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{1}{3}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{1}{3}\cdot15=5\\y=\frac{1}{3}\cdot12=4\\z=\frac{1}{3}\cdot8=\frac{8}{3}\end{cases}}\)
a) Ta có : 2x = 3y => \(\frac{x}{3}=\frac{y}{2}\)
7z = 5y => \(\frac{y}{7}=\frac{z}{5}\)
=> \(\frac{x}{3}=\frac{y}{2};\frac{y}{7}=\frac{z}{5}\)
+) \(\frac{x}{3}=\frac{y}{2}\)=> \(\frac{x}{21}=\frac{y}{14}\)
+) \(\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{y}{14}=\frac{z}{10}\)
=> \(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)
=> \(\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}=\frac{3x-7y+5z}{63-98+50}=\frac{30}{15}=2\)
=> x = 2.21 = 42 , y = 2.14 = 28 , z = 2.10 = 20
b) Ta có : x : y : z = 3 : 5 : (-2) => \(\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}\)
Đặt \(\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}=k\Rightarrow\hept{\begin{cases}x=3k\\y=5k\\z=-2k\end{cases}}\)
=> 5x = 15k , y = 5k , 3z = -6k
=> 5x - y + 3z = 15k - 5k + (-6k)
=> -16 = 10k - 6k
=> -16 = 4k
=> k = -4
Với k = -4 thì x = 3.(-4) = -12 , y = 5.(-4) = -20 , z = (-2).(-4) = 8
Vậy : ....
2x = 5y = 3z\(\Rightarrow\frac{2x}{30}=\frac{5y}{30}=\frac{3z}{30}\Leftrightarrow\frac{x}{15}=\frac{y}{6}=\frac{z}{10}=\frac{x+y-z}{15+6-10}=\frac{-44}{11}=-4\Rightarrow\hept{\begin{cases}x=-4.15=-60\\y=-4.6=-24\\z=-4.10=-40\end{cases}}\)