Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A
Dựa vào đồ thị, ta có
Khi đó
Ta có P(x) = F(x)G(x)
Do đó
a) Ta có tập xác định của cả hai hàm số \(f\left(x\right),g\left(x\right)\) đểu là \(\mathbb{R}\)
Mặt khác:
\(f\left(-x\right)=\dfrac{a^{-x}+a^{-x}}{2}=f\left(x\right);g\left(x\right)=\dfrac{a^{-x}-a^x}{2}=-g\left(x\right)\)
Vậy \(f\left(x\right)\) là hàm số chẵn, \(g\left(x\right)\) làm hàm số lẻ
b) Ta có :
\(f\left(x\right)=\dfrac{a^x+a^{-x}}{2}\ge\sqrt{a^xa^{-x}}=1,\forall x\in\mathbb{R}\)
và :
\(f\left(0\right)=\dfrac{a^0+a^0}{2}=1\)
Vậy :
\(minf\left(x\right)=f\left(0\right)=1\)
∫ P(x) e x dx | ∫ P(x)cosxdx | ∫ P(x)lnxdx |
P(x) | P(x) | P(x)lnx |
e x dx | cosxdx | dx |
\(y'=\frac{\left(\frac{x+1}{-x+1}\right)}{1+\left(\frac{x+1}{-x+1}\right)^2}-\frac{1}{1+x^2}=\frac{2}{\left(1-x\right)^2}.\frac{\left(1-x\right)^2}{\left(1-x\right)^2+\left(x+1\right)^2}-\frac{1}{1+x^2}\)\(=\frac{2}{2\left(1+x^2\right)}-\frac{1}{1+x^2}=0;\forall x\ne1\)
- Xét \(x\in\left(-\infty,1\right):y'=0,\forall x\in\left(-\infty,1\right)\)nên y là hằng số trên \(\left(-\infty,1\right)\)
mà \(y\left(0\right)=arctg1-arctg0=\frac{\eta}{4}-0=\frac{\eta}{4}\Rightarrow y=\frac{\eta}{4},\forall x\in\left(-\infty,1\right)\)(n số pi ở đây không chắc là đúng chưa mình mở vô hộp có kí tự số pi rồi mà thấy kí tự có hơi lạ lạ, thông cảm nhá)
- Xét \(x\in\left(1,\infty\right):y'=0,\forall x\in\left(1,\infty\right)\)
\(\Rightarrow y\)là hằng số trên \(\left(1,\infty\right)\)
\(\Rightarrow arctg\left(\frac{1+x}{1-x}\right)-arctgx=k,\forall x\in\left(1,\infty\right)\)
Cho \(x\rightarrow\infty\)thì \(\left(\frac{1+x}{1-x}\right)\rightarrow-1:arctg\left(-1\right)-\frac{\eta}{2}=k\Rightarrow k=-\frac{\eta}{4}-\frac{\eta}{2}=-\frac{3\eta}{4}\)
Do đó \(y=-\frac{3\eta}{4},\forall x\in\left(1,\infty\right).\)
Vậy \(y=\hept{\begin{cases}\frac{\eta}{4}\left(neux< 1\right)\\-\frac{3\eta}{4}\left(neux>1\right)\end{cases}}\)nếu đó nha.
Chọn A.
(P1): y = f(x) = 1 4 x 2 - x có đỉnh I 2 (2;-1)
P(2): y = g(x) = a x 2 - 4 a x + b (a>0)
Duy ra I1, I2, I cùng nằm trên đường thẳng x = 2.
Mà giao điểm của (P1) và Ox là A(4;0) và B(0;0).
Suy ra tứ giác lồi AI1BI2 có hai đường chéo vuông góc và b – 4a >0
Tam giác IAB có diện tích là
8.481.916.196.482 nha