Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{8.9.10}\right)x=\frac{23}{45}\)
\(\Leftrightarrow\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{8.9}-\frac{1}{9.10}\right)x=\frac{23}{45}\)
\(\Leftrightarrow\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{9.10}\right)x=\frac{23}{45}\)
\(\Leftrightarrow\frac{11}{45}x=\frac{23}{45}\)
\(\Rightarrow x=\frac{23}{45}:\frac{11}{45}\)
\(\Rightarrow x=\frac{23}{11}\)
đặt \(A=\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}\right)\)
\(2A=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{8.9.10}\)
\(2A=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}\)
\(2A=\frac{1}{1.2}-\frac{1}{9.10}=\frac{22}{45}\)
\(A=\frac{22}{45}:2=\frac{11}{45}\)
thay A vào ta được
\(\frac{11}{45}.x=\frac{23}{45}\)
\(x=\frac{23}{45}:\frac{11}{45}=\frac{23}{11}\)
\(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{8.9.10}\right).x=\frac{23}{45}\)
\(\Rightarrow\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{8.9.10}\right).x=\frac{23}{45}\)
\(\Rightarrow\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}\right).x=\frac{23}{45}\)
\(\Rightarrow\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{9.10}\right).x=\frac{23}{45}\)
\(\Rightarrow\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{90}\right).x=\frac{23}{45}\)
\(\Rightarrow\frac{1}{2}.\frac{22}{45}.x=\frac{23}{45}\)
\(\Rightarrow\frac{11}{45}.x=\frac{23}{45}\)
\(\Rightarrow x=\frac{23}{45}:\frac{11}{45}\)
\(\Rightarrow x=\frac{23}{11}\)
Ta có:
\(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}\right).x=\frac{23}{45}\)
\(\Rightarrow2.\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+....+\frac{1}{8.9.10}\right):2.x=\frac{23}{45}\)
\(\Rightarrow\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{8.9.10}\right):2.x=\frac{23}{45}\)
\(\Rightarrow\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}\right):2.x=\frac{23}{45}\)
\(\Rightarrow\left(\frac{1}{2}-\frac{1}{90}\right):2.x=\frac{23}{45}\)
\(\Rightarrow\frac{11}{45}x=\frac{23}{45}\)
\(\Rightarrow x=\frac{23}{45}\div\frac{11}{45}=\frac{23}{11}\)
Vậy \(x=\frac{23}{11}\)
\(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}\right).x=\frac{23}{45}\)
\(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}\right).\frac{1}{2}.x=\frac{23}{45}\)
\(\left(\frac{1}{1.2}+\frac{1}{2.3}+.....+\frac{1}{8.9}+\frac{1}{9.10}\right).\frac{1}{2}.x=\frac{23}{45}\)
\(\left(\frac{1}{2}+\frac{1}{6}+....+\frac{1}{72}+\frac{1}{90}\right).\frac{1}{2}.x=\frac{23}{45}\)
\(\left(\frac{1}{2}-\frac{1}{90}\right).\frac{1}{2}.x=\frac{23}{45}\)
\(\frac{22}{45}.\frac{1}{2}x=\frac{23}{45}\)
\(\frac{11}{45}.x=\frac{23}{45}\)
\(x=\frac{23}{45}\div\frac{11}{45}\)
\(x=\frac{23}{11}\)
=> \(x=\frac{23}{11}\)
\(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}\right).x=\frac{23}{45}\)
\(\Rightarrow2.\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}\right).x=\frac{46}{45}\)
\(=\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{8.9.10}\right).x\)
\(=\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}+\frac{1}{9.10}\right).x\)
\(=\left(\frac{1}{2}-\frac{1}{90}\right).x=\left(\frac{45}{90}-\frac{1}{90}\right)x=\frac{44}{90}.x=\frac{22x}{45}=\frac{46}{45}\)
=> 22x=46
=> x=\(46:22=\frac{23}{11}\)
a, \(\left(\frac{1}{x}-\frac{2}{3}\right)^2-\frac{1}{16}=0\)
\(\left(\frac{1}{x}-\frac{2}{3}\right)^2=0+\frac{1}{16}\)
\(\left(\frac{1}{x}-\frac{2}{3}\right)^2=\frac{1}{16}\)
\(\left(\frac{1}{x}-\frac{2}{3}\right)^2=\left(\frac{1}{4}\right)^2=\left(\frac{-1}{4}\right)^2\)
\(\Rightarrow\orbr{\begin{cases}\frac{1}{x}-\frac{2}{3}=\frac{1}{4}\\\frac{1}{x}-\frac{2}{3}=\frac{-1}{4}\end{cases}}\Rightarrow\orbr{\begin{cases}\frac{1}{x}=\frac{11}{12}\\\frac{1}{x}=\frac{5}{12}\end{cases}\Rightarrow\orbr{\begin{cases}11x=12\\5x=12\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{12}{11}\\x=\frac{12}{5}\end{cases}}}\)
b, \(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}\right)x=\frac{23}{45}\)
Đặt S = \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+....+\frac{1}{8.9.10}\)
2S = \(\frac{2}{1.2.3}+\frac{2}{2.3.4}+....+\frac{2}{8.9.10}\)
2S = \(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}\)
2S = \(\frac{1}{1.2}-\frac{1}{9.10}=\frac{22}{45}\)
S = \(\frac{22}{45}:2=\frac{11}{45}\)
\(\Rightarrow\frac{11}{45}x=\frac{23}{45}\Rightarrow x=\frac{23}{45}:\frac{11}{45}\Rightarrow x=\frac{23}{11}\)
a/ (1/x -2/3)2=1/16=(1/4)2
Có 2 trường hợp:
+/ 1/x -2/3= - 1/4
<=> 1/x =2/3 -1/4 = 5/12
=> x1=12/5
+/ 1/x - 2/3 =1/4
<=> 1/x = 2/3 +1/4= 11/12
=> x2=12/11
b/ Ta có:
2/(1.2.3)=1/(1.2) - 1/2.3 ; 2/(2.3.4)=1/2.3 -1/3.4 ; ...; 2/(8.9.10)=1/8.9 -1/9.10
=> (1/1.2.3 + 1/2.3.4 +...+1/8.9.10)=23/45
<=> (1/1.2 -1/2.3 +1/2.3 -1/3.4 +...+1/8.9-1/9.10).x/2=23/45
<=> (1/1.2 -1/9.10).x/2 =23/45
<=> x.11/45=23/45
=> x=23/11
Có \(\left(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+...+\frac{1}{8\cdot9\cdot10}\right)+x=\frac{23}{45}\)
Cho \(A=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+...+\frac{1}{8\cdot9\cdot10}\)
Ta có công thức sau: \(\frac{1}{n\cdot\left(n+1\right)}+\frac{1}{\left(n+1\right)\cdot\left(n+2\right)}=\frac{2}{n\cdot\left(n+1\right)\left(n+1\right)}\)
\(\Rightarrow2A=\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+...+\frac{2}{8\cdot9\cdot10}\\ =\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{8\cdot9}-\frac{1}{9\cdot10}\\ =\frac{1}{1\cdot2}-\frac{1}{9\cdot10}=\frac{22}{45}\)
\(\Rightarrow A=\frac{22}{45}:2=\frac{11}{45}\)
Thay vào phép tính trên ta được:
\(\frac{11}{45}\cdot x=\frac{23}{45}\\ x=\frac{23}{45}:\frac{11}{45}\\ x=\frac{23}{11}\)
Vậy \(x=\frac{23}{11}\)