Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+............+1/9+1/10
=1-1/10
=10/10-1/10
=9/10
Bài làm:
\(\frac{1}{1\times2}+\frac{1}{2\times3}\)\(+\frac{1}{3\times4}+\frac{1}{4\times5}\)\(+...\frac{1}{9\times10}\)
\(=\frac{1}{1}-\frac{1}{2}\)\(+\frac{1}{2}-\frac{1}{3}\)\(+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}\)\(-\frac{1}{5}\)\(+...\frac{1}{9}-\frac{1}{10}\)
\(=\)\(\frac{1}{1}-\frac{1}{10}\)
\(=\frac{9}{10}\)
\(C=\dfrac{2}{1\times2}+\dfrac{2}{2\times3}+...+\dfrac{2}{2019\times2020}\)
\(=2\left(\dfrac{1}{1\times2}+\dfrac{1}{2\times3}+...+\dfrac{1}{2019\times2020}\right)\)
\(=2\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2019}-\dfrac{1}{2020}\right)\)
\(=2\left(1-\dfrac{1}{2020}\right)=2.\dfrac{2019}{2020}=\dfrac{2019}{1010}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{14.15}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{14}-\frac{1}{15}\)
\(A=1-\frac{1}{15}\)
\(A=\frac{14}{ }15\)
Ta đặt biểu thức là:
A = 1/1 x 2 + 1/2 x 3 + 1/3 x 4 + .... + 1/9 x 10
A = 1 - 1/2 + 1/2 - 1/3 +1/3 - 1/4 + ... + 1/9 - 1/10
A = 1 - 1/10
A = 9/10
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}\)
\(=\frac{9}{10}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{15.16}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{15}-\frac{1}{16}\)
\(=1-\frac{1}{16}\)
\(=\frac{15}{16}\)
\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{8\times9}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}\)
\(=\frac{1}{1}-\frac{1}{9}=\frac{8}{9}\)
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{8\cdot9}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{8}-\frac{1}{9}\)
\(=\frac{1}{1}-\frac{1}{9}\)
\(=\frac{8}{9}\)
1/1.2+1/2.3+1/3.4+...+1/999.1000+1
=1-1/2+1/2-1/3+1/3-1/4+...+1/998-1/999+1/999-1/1000+1
=1-1/1000+1
=999/1000+1
=1999/1000
Chuẩn ko cần chỉnh
\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{999\times1000}+1\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{999}-\frac{1}{1000}+1\)
\(=1-\frac{1}{1000}+1\)
\(=\frac{999}{1000}+1\)
\(=\frac{1999}{1000}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{2018.2019}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2018}-\frac{1}{2019}\)
\(=1-\frac{1}{2019}\)
\(=\frac{2018}{2019}\)
Dấu \(.\)là dấu nhân .
Ta có :
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2018.2019}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2018}-\frac{1}{2019}\)
\(=1-\frac{1}{2019}\)
\(=\frac{2019}{2019}-\frac{1}{2019}\)
\(=\frac{2018}{2019}\)
~ Ủng hộ nhé