Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{97.98}+\frac{1}{99.100}\)
\(C=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{97}-\frac{1}{98}+\frac{1}{99}-\frac{1}{100}\)
\(C=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{98}+\frac{1}{100}\right)\)
\(C=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{99}+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)
\(C=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{99}+\frac{1}{100}\right)-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{50}\)
\(C=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)
\(D=\frac{1}{51.100}+\frac{1}{52.99}+\frac{1}{53.98}+...+\frac{1}{99.52}+\frac{1}{100.51}\)
\(D=\frac{1}{151}.\left(\frac{151}{51.100}+\frac{151}{52.99}+\frac{151}{53.98}+...+\frac{151}{99.52}+\frac{151}{100.51}\right)\)
\(D=\frac{1}{151}.\left(\frac{1}{100}+\frac{1}{51}+\frac{1}{99}+\frac{1}{52}+...+\frac{1}{52}+\frac{1}{99}+\frac{1}{51}+\frac{1}{100}\right)\)
\(D=\frac{1}{151}.\left(\frac{2}{100}+\frac{2}{99}+...+\frac{2}{51}\right)\)
\(D=\frac{2}{151}.\left(\frac{1}{100}+\frac{1}{99}+...+\frac{1}{51}\right)\)
\(\Rightarrow C:D=\frac{\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}}{\frac{2}{151}.\left(\frac{1}{100}+\frac{1}{99}+...+\frac{1}{51}\right)}\)
\(\Rightarrow C:D=\frac{151}{2}=75\frac{1}{2}\)
E=1/1.3+1/3.6+1/6.9+.............+1/20.23
<=>E=1/1-1/3+1/3-1/6+1/6-1/9+...........+1/20-1/23
<=>E=1/1-1/23
<=>E=22/23
Kb và k mk nha mn.
Cho hai phan so 1/n va 1/n+1 (n thuoc z)chung to rang h cua hai phan so nay bang hieu cua chung
Tui làm bài hình thôi nha.
O y x m n t
a/ Ta có: \(\hept{\begin{cases}\widehat{xOm}=\widehat{nOy}=90^0\left(gt\right)\\\widehat{nOm}:chung\end{cases}\Rightarrow\widehat{xOn}=\widehat{mOy}}\)
b/ Vì Ot là pgiác góc xOy => góc xOt = góc tOy
Mà: góc xOn = góc mOy (cmt)
=> góc nOt = góc tOm
=> Ot là phân giác góc nOm
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{x.\left(x+2\right)}=\frac{1005}{2011}\)
\(\frac{1}{2}\left(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{x.\left(x+2\right)}\right)=\frac{1005}{2011}\)
\(\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+2}\right)=\frac{1005}{2011}\)
\(\frac{1}{2}\left(\frac{1}{3}-\frac{1}{x+2}\right)=\frac{1005}{2011}\)
\(\frac{1}{3}-\frac{1}{x+2}=\frac{2010}{2011}\)
\(\frac{1}{x+2}=\frac{1}{3}-\frac{2010}{2011}\)
\(\frac{1}{x+2}=\frac{1}{2011}\)
\(\Rightarrow x+2=2011\)
\(x=2009\)
Đặt biểu thứ là A
2A=2/1.3+2/2.5+...+2/x.x+2
2A=1-1/3+1/3-1/5+.......+1/x-1/x+2
2A=1-1/x+2
( 2x + 1 )5 : ( 2x + 1 )2 = 1
\(\Rightarrow\)( 2x+ 1 )3 = 1 = 13
\(\Rightarrow\)2x + 1 = 1
\(\Rightarrow\)2x = 0
\(\Rightarrow\)x = 0
2x + 2 . 2x + ... + 10 . 2x= 10 . 11
\(\Rightarrow\)2x . ( 1 + 2 + 3 + ... + 9 + 10 ) = 110
\(\Rightarrow\)2x . 55 = 110
\(\Rightarrow\)2x = 110 : 55
\(\Rightarrow\)2x = 2
\(\Rightarrow\)x = 1
\(S=\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+...+\dfrac{1}{97.99}\)
\(2S=\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{97.99}\)
\(2S=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{97}-\dfrac{1}{99}\)
\(2S=\dfrac{1}{3}-\dfrac{1}{99}\)
\(2S=\dfrac{32}{99}\)
\(S=\dfrac{32}{99}:2\)
\(S=\dfrac{16}{99}\)
Cảm ơn bạn rất nhiều! Bạn đã cứu mình rùi! Xin trân thành cảm ơn!
Ta có : \(S=\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)
\(\Rightarrow2S=2\left(\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\right)\)
\(\Rightarrow2S=\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\)
\(\Rightarrow2S=\left(\frac{1}{3}-\frac{1}{5}\right)+\left(\frac{1}{5}-\frac{1}{7}\right)+...+\left(\frac{1}{97}-\frac{1}{99}\right)\)
\(\Rightarrow2S=\left(\frac{1}{3}-\frac{1}{99}\right)+\left[\left(\frac{1}{5}+...+\frac{1}{97}\right)-\left(\frac{1}{5}+\frac{1}{7}+...+\frac{1}{97}\right)\right]\)
\(\Rightarrow2S=\left(\frac{33}{99}-\frac{1}{99}\right)+0\)
\(\Rightarrow2S=\frac{32}{99}\)
\(\Rightarrow S=\frac{32}{99}\div2\)
\(\Rightarrow S=\frac{16}{99}\)
\(S=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{97.99}\)
\(S=\frac{1}{2}.\left(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\right)\)
\(S=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)
\(S=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{99}\right)\)
\(S=\frac{1}{2}.\frac{32}{99}=\frac{16}{99}\)
1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+0 = 24 . kNHA
1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 0*1 + 1
= 1 x 23 + 0 x 1 + 1
= 23 + 0 + 1
= 23 + 1
= 24