Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Tọa độ điểm A là:
\(\left\{{}\begin{matrix}-\dfrac{3}{4}x+\dfrac{5}{2}=\dfrac{4}{5}x+\dfrac{7}{2}\\y=\dfrac{-3}{4}x+\dfrac{5}{2}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}-\dfrac{7}{5}x=1\\y=\dfrac{-3}{4}x+\dfrac{5}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{7}\\y=\dfrac{-3}{4}\cdot\dfrac{5}{7}+\dfrac{5}{2}=\dfrac{55}{28}\end{matrix}\right.\)
Dăm ba cái bài này . Ui người ta nói nó dễ !!!
a ) song song \(\Leftrightarrow\hept{\begin{cases}a=a^,\\b\ne b^,\end{cases}}\Leftrightarrow\hept{\begin{cases}m-1=\frac{1}{2}\\m\ne-\frac{1}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}m=\frac{3}{2}\\m\ne-\frac{1}{2}\end{cases}}\)
b ) Vì ( 1 ) cắt trục hoành tại điểm A có hoành độ bằng 2 nên ta có : x = 2 ; y = 0
=> điểm A( 2 ; 0 )
Thay A vào ( 1 ) ta được : 0 = ( m - 1 ) . 2 + m
<=> 0 = 2m - 2 +m
<=> 0 + 2 = 2m + m
<=> 2 = 3m
<=> m = 2/3
c )
Gọi \(B\left(x_B;y_B\right)\) là điểm tiếp xúc của ( O ) và ( 1 )
Ta có bán kính của ( O ) là \(\sqrt{2}\) nên \(x_B=0;y_B=\sqrt{2}\)
=> \(B\left(0;\sqrt{2}\right)\)
Thay B vào ( 1 ) ta được : \(\sqrt{2}=\left(m-1\right).0+m\)
\(\Rightarrow m=\sqrt{2}\)
Bai 1: Ap dung BDT Bunhiacopxki ta co:
\(ax+by+cz+2\sqrt {(ab+ac+bc)(xy+yz+xz)} \)
\(≤ \sqrt {(a^2+b^2+c^2)(x^2+y^2+z^2)} + \sqrt {(ab+ac+bc)(xy+yz+zx)}+\sqrt {(ab+ac+bc)(xy+yz+zx)}\)
\(≤ \sqrt {(a^2+b^2+c^2+2ab+2ac+2bc)(x^2+y^2+z^2+2xy+2yz+2zx)}\)
\(= (a+b+c)(x+y+z)\)
=> \(Q.E.D\)
Tiep bai 4:Ta co:
BDT <=> \((2+y^2z)(2+z^2x)(2+x^2y)≥(2+x)(2+y)(2+z)\)
Sau khi khai trien con: \(2(z^2x+y^2z+x^2y)+x^2z+z^2y+y^2x≥xy+yz+zx+2x+2y+2z \)
Ap dung BDT Cosi ta co:
\(z^2x+x ≥ 2zx \) <=> \(z^2x≥2zx-x\)
Lam tuong tu ta co: \(2(z^2x+y^2z+x^2y)≥4xy+4yz+4zx-2x-2y-2z \)(1)
\(x^2z+{1\over z}≥2x \) <=> \(x^2z≥2x-xy \) (do xyz=1)
Lam tuong tu ta co: \(x^2z+z^2y+y^2x≥ 2y+2z+2x-xy-yz-zx\)(2)
Cong (1) voi (2) ta co: VT\(≥ 3(xy+yz+zx)\)(*)
Voi cach lam tuong tu ta cung duoc: VT\(≥ 3(x+y+z) \)(**)
Tu (*) va (**) suy ra : \(3 \)VT \(≥ 6(x+y+z)+3(xy+yz+zx) \)
<=> VT \(≥ 2(x+y+z)+xy+yz+zx\)
=> \(Q.E.D\)
theo bài ra ta có góc A=180/10*3=54độ góc B=180/10*5 =90 độ góc C=180-90-54=36 độ suy ra tam giác ABC cân tại B
VÌ MB và NB LÀ tiếp tuyến suy ra tam giác BMN là tam giác cân suy ra góc BNM=BMN=180-GOCSB=[180-90]/2=45 độ
tương tự đối với tam giác CNP có gócPNC=NPC=180-gócC=[180-36]/2=72 độ
do đó góc MNP=180-MNB-PNC=180-45-72=63 độ