giup toi voi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a: \(x^2-x+1\)
\(=x^2-x+\frac14+\frac34\)
\(=\left(x-\frac12\right)^2+\frac34\ge\frac34>0\forall x\)
b: \(x^2+x+2\)
\(=x^2+x+\frac14+\frac74\)
\(=\left(x+\frac12\right)^2+\frac74\ge\frac74>0\forall x\)
c: \(-a^2+a-3\)
\(=-\left(a^2-a+3\right)\)
\(=-\left(a^2-a+\frac14+\frac{11}{4}\right)\)
\(=-\left(a-\frac12\right)^2-\frac{11}{4}\le-\frac{11}{4}<0\forall a\)
d:Đặt \(A=\frac{3x^2-x+1}{-4x^2+2x-1}\)
\(3x^2-x+1\)
\(=3\left(x^2-\frac13x+\frac13\right)\)
\(=3\left(x^2-2\cdot x\cdot\frac16+\frac{1}{36}+\frac{11}{36}\right)\)
\(=3\left(x-\frac16\right)^2+\frac{11}{12}\ge\frac{11}{12}>0\forall x\) (1)
\(-4x^2+2x-1\)
\(=-4\left(x^2-\frac12x+\frac14\right)\)
\(=-4\left(x^2-2\cdot x\cdot\frac14+\frac{1}{16}+\frac{3}{16}\right)\)
\(=-4\left(x-\frac14\right)^2-\frac34\le-\frac34<0\forall x\) (2)
Từ (1),(2) suy ra \(\frac{3x^2-x+1}{-4x^2+2x-1}<0\forall x\)
=>A<0 với mọi x


Không ạ , tại mốc thời gian đó trong quá khứ/tương lai, hành động vừa mới kết thúc hoặc đang diễn ra một cách liên tục, chứ không hẳn là đã kết thúc hoàn toàn. Thì hoàn thành tiếp diễn nhấn mạnh vào thời lượng kéo dài của hành động trước một điểm thời gian xác định, không tập trung vào sự hoàn thành trọn vẹn.
vậy tức là hành động có thể kết thúc hoặc vẫn tiếp tục đúng không ạ, thì này sẽ nhấn mạnh quá trình kéo dài liên tục chứ không phải sự hoàn thành ạ?

Olm chào em, số chính phương là bình phương của một số nguyên.
Số chính phương là số có thể viết dưới dạng bình phương của các số nguyên ^_^

1 looked into → looked through
2 two as much → twice as much
3 in and the first most city → in the USA and the second-most city
4 take your temper over on → take your temper out on
5 leave-out → left out
6 stressful → stressed
7 have → has
8 when doing it → when to do it
9 enough beautiful → beautiful enough
10 There were used to be → There used to be

We wish it......raining now. ( not be )
\(\rarr\) We wish it were not raining now.
a: \(2x^2+2x+3\)
\(=2\left(x^2+x+\frac32\right)\)
\(=2\left(x^2+x+\frac14+\frac54\right)\)
\(=2\left(x+\frac12\right)^2+\frac52\ge\frac52\forall x\)
=>\(\frac{3}{2x^2+2x+3}\le3:\frac52=\frac65\forall x\)
Dấu '=' xảy ra khi \(x+\frac12=0\)
=>\(x=-\frac12\)
b: \(-x^2+2x-2\)
\(=-\left(x^2-2x+2\right)\)
\(=-\left(x^2-2x+1+1\right)\)
\(=-\left(x-1\right)^2-1\le-1\forall x\)
=>\(\frac{1}{-x^2+2x-2}\ge\frac{1}{-1}=-1\forall x\)
Dấu '=' xảy ra khi x-1=0
=>x=1
c: \(3x^2+4x+15\)
\(=3\left(x^2+\frac43x+5\right)\)
\(=3\left(x^2+2\cdot x\cdot\frac23+\frac49+\frac{41}{9}\right)\)
\(=3\left(x+\frac23\right)^2+\frac{41}{3}\ge\frac{41}{3}\forall x\)
=>\(\frac{5}{3x^2+4x+15}\le5:\frac{41}{3}=\frac{15}{41}\)
=>\(-\frac{5}{3x^2+4x+15}\ge-\frac{15}{41}\forall x\)
Dấu '=' xảy ra khi \(x+\frac23=0\)
=>\(x=-\frac23\)
d: \(-4x^2+8x-5\)
\(=-4\left(x^2-2x+\frac54\right)\)
\(=-4\left(x^2-2x+1+\frac14\right)\)
\(=-4\left(x-1\right)^2-1<=-1\forall x\)
=>\(\frac{2}{-4x^2+8x-5}\ge\frac{2}{-1}=-2\forall x\)
Dấu '=' xảy ra khi x-1=0
=>x=1