Tìm cặp (x;y) nguyên biết:
\(\left|x+3\right|+\left|x-1\right|=\dfrac{16}{\left|y-2\right|+\left|y+2\right|}\)
\(\left|y+3\right|+5=\dfrac{10}{\left(2x-6\right)^2+2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{-19}{2}\) < a < \(\dfrac{-20}{3}\)
- \(\dfrac{57}{6}\) < a < \(\dfrac{-40}{6}\)
a = - 56/6; -55/6; -54/6; - 53/6; - 52/6; - 51/6; ......; -42/6; -41/6
b, \(\dfrac{1}{3}\) < \(\dfrac{4}{b}\) < \(\dfrac{1}{2}\)
\(\dfrac{4}{12}\) < \(\dfrac{4}{b}\)< \(\dfrac{4}{8}\)
b = 11; 10; 9
2(x-3)+3(x+1)=4x-1
=>2x-6+3x+3=4x-1
=> 2x+3x-4x=-1+6-3
=> x(2+3-4)=2
=>x=2
Vậy x=2
\(2\times\left(x-3\right)+3\times\left(x+1\right)=4x-1\)
\(2x-6+3x+3=4x-1\)
\(\Rightarrow2x-6+3x+3-\left(4x-1\right)=0\)
\(2x-6+3x+3-4x+1=0\)
\(2x+3x-4x-6+3+1=0\)
\(\left(2+3-4\right)x-\left(6-3-1\right)=0\)
\(x-2=0\)
\(x=0+2\)
\(x=2\)
2(x-3)+3(x+1)=4x-1
=>2x-6+3x+3=4x-1
=> 2x+3x-4x=-1+6-3
=> x(2+3-4)=2
=>x=2
Vậy x=2
- \(\dfrac{5}{6}\) + 3\(x\) = \(\dfrac{2}{3}\) - \(\dfrac{1}{2}\)\(x\)
3\(x\) + \(\dfrac{1}{2}\)\(x\) = \(\dfrac{2}{3}\) + \(\dfrac{5}{6}\)
\(\dfrac{7x}{2}\) = \(\dfrac{3}{2}\)
\(x\) = \(\dfrac{3}{2}\) : \(\dfrac{7}{2}\)
\(x\) = \(\dfrac{3}{7}\)
Ta có \(\overline{a50}+\overline{b1}+\overline{1c}=999\)
⇒ \(\overline{a00}+50+\overline{b0}+1+10+c=999\)
⇒ \(\left(\overline{a00}+\overline{b0}+c\right)+\left(50+1+10\right)=999\)
⇒ \(\overline{abc}+61=999\)
⇒ \(\overline{abc}=999-61\)
⇒ \(\overline{abc}=938\)
Vậy số cần tìm là 938
\(\dfrac{3x+5}{x-2}\) ϵ Z, đk x # 2
⇔ 3 + \(\dfrac{11}{x-2}\) ϵ Z
⇔ \(\dfrac{11}{x-2}\) ϵ Z
x - 2 ϵ Ư(11) = { -11; -1; 1; 11}
x ϵ {-9; 1; 3; 13}
\(\dfrac{3x+5}{x-2}\in Z\)
\(\Leftrightarrow\dfrac{3x-6+11}{x-2}\in Z\)
\(\Leftrightarrow\dfrac{3\left(x-2\right)+11}{x-2}\in Z\)
\(\Leftrightarrow\dfrac{3\left(x-2\right)}{x-2}+\dfrac{11}{x-2}\in Z\)
\(\Leftrightarrow3+\dfrac{11}{x-2}\in Z\)
Vì 3 thuộc Z nên \(\dfrac{11}{x-2}\)phải thuộc Z
\(\Rightarrow\dfrac{11}{x-2}\in Z\)
\(\Leftrightarrow11⋮x-2\)
\(\Rightarrow\) x - 2 là ước của 11
\(\Rightarrow x-2\in\left\{-11;-1;1;11\right\}\)
Ta có bảng sau:
\(\begin{matrix}x-2&-11&-1&1&11\\x&-9&1&3&13\end{matrix}\)
Vậy: \(x\in\left\{-9;1;3;13\right\}\)