Tìm Min A= x^2+10x+1
Help me
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\dfrac{2}{5}x-2\right):\left(\dfrac{-3}{2}\right)=\dfrac{1}{3}\\ \Leftrightarrow\dfrac{2}{5}x-2=\dfrac{1}{3}.\dfrac{-3}{2}\\ \Leftrightarrow\dfrac{2}{5}x-2=\dfrac{-1}{2}\\ \Leftrightarrow\dfrac{2}{5}x=\dfrac{-1}{2}+2=\dfrac{-3}{2}\\ \Rightarrow x=\dfrac{-3}{2}:\dfrac{2}{5}=\dfrac{-3}{2}.\dfrac{2}{5}=\dfrac{-3}{5}\)
(\(\dfrac{2}{5}x\) - 2 ) : ( -\(\dfrac{3}{2}\) ) = \(\dfrac{1}{3}\)
\(\dfrac{2}{5}x\) - 2 = \(\dfrac{1}{3}\).\((-\dfrac{3}{2})\)
\(\dfrac{2}{5}x\) - 2 = \(-\dfrac{1}{2}\)
\(\dfrac{2}{5}\)\(x\) = 2 - \(\dfrac{1}{2}\)
\(\dfrac{2}{5}x\) = \(\dfrac{3}{2}\)
\(x\) = \(\dfrac{3}{2}\) : \(\dfrac{2}{5}\)
\(x\) = \(\dfrac{15}{4}\)
\(=\dfrac{3}{4}:\left(\dfrac{2\times9-5\times3}{27}\right)+\dfrac{9}{4}\\ =\dfrac{3}{4}:\dfrac{1}{9}+\dfrac{9}{4}\\ =\dfrac{27}{4}+\dfrac{9}{4}\\ =\dfrac{27+9}{4}=\dfrac{36}{4}=9\)
= 3/4 : ( 2/3 - 5/9 ) + 9/4
= 3/4 : ( 18/27 - 15/27 ) + 9/4
= 3/4 : 1/9 + 9/4
= 27/4 + 9/4
= 36/4
= 9 :33
( \(-\dfrac{1}{2}\))2 - \(\dfrac{5}{8}\) : (0,5)3 - \(\dfrac{5}{3}\) .(-6)
= \(\dfrac{1}{4}\) - \(\dfrac{5}{8}\) : (\(\dfrac{1}{2}\))3 - \(\dfrac{5}{3}\) .( -6)
= \(\dfrac{1}{4}\) - \(\dfrac{5}{8}\) : \(\dfrac{1}{8}\) + 10
= \(\dfrac{1}{4}\) - 5 + 10
= \(\dfrac{1}{4}+5\)
= 21/4
\(\dfrac{8}{9}-\dfrac{1}{72}-\dfrac{1}{56}-\dfrac{1}{42}-.....-\dfrac{1}{6}-\dfrac{1}{2}\)
= \(\dfrac{8}{9}-(\dfrac{1}{72}+\dfrac{1}{56}+\dfrac{1}{42}+.....+\dfrac{1}{6}+\dfrac{1}{2})\)
= \(\dfrac{8}{9}\) - \((\)\(\dfrac{1}{9.8}+\dfrac{1}{8.7}+\dfrac{1}{7.6}+\dfrac{1}{6.5}+.....+\dfrac{1}{1.2}\) \()\)
= \(\dfrac{8}{9}\) - \((\) \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+.....+\dfrac{1}{8.9}\)\()\)
= \(\dfrac{8}{9}\) - (\(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+.....+\dfrac{1}{8}-\dfrac{1}{9}\)\()\)
= \(\dfrac{8}{9}\) - \((\) 1- \(\dfrac{1}{9}\))
= \(\dfrac{8}{9}\) - \(\dfrac{8}{9}\)
= 0
A = x2 +10x + 1
A = (x2 + 2.5x + 25) - 24
A = (x+5)2 - 24
( x + 5)2 ≥ 0 ⇔ (x + 5)2 - 24 ≥ -24
A (min) = - 24 ⇔ x = -5