tìm x, y biết:
2^x+2^y=192(x,y thuộc N)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(-\(\dfrac{1}{2}\))3:(-\(\dfrac{1}{2}\))6=(-\(\dfrac{1}{8}\)):\(\dfrac{1}{64}\)=-\(\dfrac{64}{8}\)=-8
`#3107.101107`
\(\left(-\dfrac{1}{2}\right)^3\div\left(-\dfrac{1}{2}\right)^6\\ =\left(-\dfrac{1}{2}\right)^{3-6}\\ =\left(-\dfrac{1}{2}\right)^{-3}\\ =\left(-2\right)^3\\ =-8\)
\(-\dfrac{3}{11}.\dfrac{5}{7}+\dfrac{5}{7}.-\dfrac{8}{11}+\dfrac{19}{7}\)
`=` \(\dfrac{5}{7}.\left(\dfrac{-3}{11}+\dfrac{-8}{11}\right)+\dfrac{19}{7}\)
`=` \(\dfrac{5}{7}.\dfrac{-11}{11}+\dfrac{19}{7}\)
`=` \(\dfrac{5}{7}.\left(-1\right)+\dfrac{19}{7}\)
`=` \(-\dfrac{5}{7}+\dfrac{19}{7}\)
`=` \(\dfrac{14}{7}\)
`= 2`
ΔAEH vuông tại E
mà EI là đường trung tuyến
nên IE=IH
=>ΔIEH cân tại I
ΔBEC vuông tại E
mà EK là đường trung tuyến
nên KE=KB
=>ΔKEB cân tại K
\(\widehat{IEK}=\widehat{IEB}+\widehat{KEB}=\widehat{IHE}+\widehat{KBE}\)
\(=\widehat{BHD}+\widehat{DBH}=90^0\)
=>IE\(\perp\)EK
\(a.\left(x-2\right)\left(x^2+x-1\right)-x\left(x^2-1\right)\\ =\left(x^3+x^2-x-2x^2-2x+2\right)-\left(x^3-x\right)\\ =x^3-x^2-3x+2-x^3+x\\ =-x^2-2x+2\\ b.\left(2x-9\right)\left(2x+9\right)-4x^2\\ =\left[\left(2x\right)^2-9^2\right]-4x^2\\ =4x^2-81-4x^2\\ =-81\\ c.2x^2+3\left(x-1\right)\left(x-1\right)\\ =2x^2+3\left(x-1\right)^2\\ =2x^2+3\left(x^2-2x+1\right)\\ =2x^2+3x^2-6x+3\\ =5x^2-6x+3\)
a; (\(x\) - 2)(\(x^2\) + \(x\) - 1) - \(x\)(\(x^2\) - 1)
= \(x^3\) + \(x^2\) - \(x\) - 2\(x^2\) - 2\(x\) + 2 - \(x^3\) + \(x\)
= (\(x^3\) - \(x^3\)) - ( 2\(x^2\) - \(x^2\)) - (\(x\) + 2\(x\) - \(x\)) + 2
= 0 - \(x^2\) - (3\(x\) - \(x\)) + 2
= - \(x^2\) - 2\(x\) + 2
63.370 + 63.82 + 37.69 + 41
= (63.370 + 63.82) + 37.69 + 41
= 63.(370 + 82) + 2553 + 41
= 63.452 + 2553 + 41
= 28476 +2553 + 41
= 31029 + 41
= 31070
a: Ta có: BD+DE=BE
CE+ED=CD
mà BD=CE
nên BE=CD
Xét ΔABE và ΔACD có
AB=AC
\(\widehat{ABE}=\widehat{ACD}\)
BE=CD
Do đó: ΔABE=ΔACD
=>\(\widehat{EAB}=\widehat{DAC}\)
b: Ta có: MD+DB=MB
ME+EC+MC
mà MB=MC và DB=EC
nên MD=ME
=>M là trung điểm của DE
Xét ΔAMD và ΔAME có
AM chung
MD=ME
AD=AE
Do đó: ΔAMD=ΔAME
=>\(\widehat{DAM}=\widehat{EAM}\)
=>AM là phân giác của góc DAE
c: Xét ΔADE cân tại A có \(\widehat{DAE}=60^0\)
nên ΔADE đều
=>\(\widehat{ADE}=\widehat{AED}=60^0\)
a: Xét ΔABE và ΔACE có
AB=AC
\(\widehat{BAE}=\widehat{CAE}\)
AE chung
Do đó: ΔABE=ΔACE
b: ΔABE=ΔACE
=>BE=CE
=>E là trung điểm của BC
=>E nằm trên đường trung trực của BC(1)
Ta có: AB=AC
=>A nằm trên đường trung trực của BC(2)
Từ (1),(2) suy ra AE là đường trung trực của BC
\(\left(x-0,3\right)^2=9\\ =>\left(x-0,3\right)^2=3^2\\TH1:x-0,3=3\\ =>x=3+0,3\\ =>x=3,3\\ TH2:x-0,3=-3\\ =>x=-3+0,3\\ =>x=-2.7\)
`2^x + 2^y = 192`
Ta có: `2^7 = 128 < 192 ; 2^8 = 256 > 192`
Nên `x;y < 8`
Không mất tính tổng quát, xét:
`-> x = 1` thì `y` không phải là số tự nhiên
`-> x = 2` thì `y` không phải là số tự nhiên
`-> x = 3` thì `y` không phải là số tự nhiên
`-> x = 4` thì `y` không phải là số tự nhiên
`-> x = 5` thì `y` không là số tự nhiên
`-> x = 6` thì `y` không phải là số tự nhiên
`-> x = 7` thì `y = 6` (Thỏa mãn)
Vậy ` (x;y) = (7;6); (6;7)`