Chứng minh rằng với các số thực dương \(a_1,a_2,a_3,...a_n\)thì:
\(\sqrt[n]{\frac{a_1^2+a_2^2+a_3^2+...+a_n^2}{n}}\)\(\ge\frac{a_1+a_2+a_3+...+a_n}{n}\)\(\ge\sqrt[n]{a_1a_2a_3...a_n}\)\(\ge\frac{n}{\frac{1}{a_1}+\frac{1}{a_2}+\frac{1}{a_3}+...+\frac{1}{a_n}}\)
Cái đầu tiên là \(\sqrt[n]{\frac{a_1^n+a_2^n+a_3^n+...+a_n^n}{n}}\)nhé.