Ai thích luyện thì luyện nhé
\(\hept{\begin{cases}x^2+y^2=3\\x^2+y^2+\sqrt{x^3+4x^2-12x+3=2x}\end{cases}}\left(x,y\inℝ\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét tứ giác BCEF ta có
^CEB = ^CFB = 900
mà 2 góc này kề, cùng nhìn cạnh BC
Vậy tứ giác BCEF là tứ giác nt 1 đường tròn
b, Xét tam giác AEB và tam giác AFC
^A _ chung
^AEB = ^AFC = 900
Vậy tam giác AEB ~ tam giác AFC (g.g)
\(\frac{AE}{AF}=\frac{AB}{AC}\Rightarrow AE.AC=AB.AF\)
\(\hept{\begin{cases}x^2+y^2=25\\xy=12\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2-2xy=25\\xy=12\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2-2.12=25\\xy=12\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2=49\\xy=12\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y=\pm7\\xy=12\end{cases}}\)(*)
+) Xét trường hợp \(x+y=7\), khi đó (*) \(\Rightarrow\hept{\begin{cases}x+y=7\\xy=12\end{cases}}\Leftrightarrow\hept{\begin{cases}y=7-x\\x\left(7-x\right)=12\end{cases}}\Leftrightarrow\hept{\begin{cases}y=7-x\\x^2-7x+12=0\left(\cdot\right)\end{cases}}\)
Giải \(\left(\cdot\right)\), ta có \(x^2-7x+12=0\)\(\Leftrightarrow x^2-3x-4x+12=0\)\(\Leftrightarrow x\left(x-3\right)-4\left(x-3\right)=0\)\(\Leftrightarrow\left(x-3\right)\left(x-4\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=4\end{cases}}\)
Khi \(x=3\)thì \(y=7-x=7-3=4\)
Khi \(x=4\)thì \(y=7-x=7-4=3\)
Vậy ta tìm được 2 cặp số (x;y) là \(\left(3;4\right)\)và \(\left(4;3\right)\)
+) Xét trường hợp \(x+y=-7\), khi đó (*) \(\Rightarrow\hept{\begin{cases}x+y=-7\\xy=12\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-7-x\\xy=12\end{cases}}\Leftrightarrow\hept{\begin{cases}y=7-x\\x\left(-7-x\right)=12\end{cases}}\Leftrightarrow\hept{\begin{cases}y=7-x\\x^2+7x+12=0\left(#\right)\end{cases}}\)
Giải \(\left(#\right)\), ta có \(x^2+7x+12=0\)\(\Leftrightarrow x^2+3x+4x+12=0\)\(\Leftrightarrow x\left(x+3\right)+4\left(x+3\right)=0\)\(\Leftrightarrow\left(x+3\right)\left(x+4\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x=-3\\x=-4\end{cases}}\)
Khi \(x=-3\)thì \(y=-7-x=-7-\left(-3\right)=-4\)
Khi \(x=-4\)thì \(y=-7-x=-7-\left(-4\right)=-3\)
Vậy ta tìm được 2 cặp số (x;y) là \(\left(-3;-4\right)\)và \(\left(-4;-3\right)\)
Như vậy ta tìm được 4 cặp giá trị (x;y) thỏa mãn yêu cầu đề bài là \(\left(3;4\right);\left(4;3\right);\left(-3;-4\right)\)và \(\left(-4;-3\right)\)
Bài này không khó chỉ cần sử dụng nguyên tắc Đirichle
+ Dễ dàng thấy có ít nhất 6 điểm cùng màu
+ Với 6 điểm này, xét các đoạn thảng nối một điểm A với các điểm còn lại tồn tại ba đoạn cùng màu giả sử là AB, AC, AD. Khi đó một
trong bốn tam giác ABC, ACD, ABD, BCD là tam giác cần tìm
(bài toán này chỉ hay ở chỗ cho nhiều màu làm học sinh ... hãi nhưng nếu nắm chắc cơ bản thì okie ngay!)
Xin lỗi bạn nhưng mình chỉ tìm được GTNN của P thôi. Mong bạn thông cảm.
Ta có \(P=\sqrt{25x^2-20x+4}+\sqrt{25x^2-30x+9}\)
\(=\sqrt{\left(5x-2\right)^2}+\sqrt{\left(5x-3\right)^2}\)
\(=\left|5x-2\right|+\left|5x-3\right|\)
\(=\left|5x-2\right|+\left|3-5x\right|\)
Áp dụng BĐT \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\), ta có:
\(P\ge\left|5x-2+3-5x\right|=\left|1\right|=1\)
Dấu "=" xảy ra khi \(\left(5x-2\right)\left(3-5x\right)\ge0\), có 2 trường hợp xảy ra:\
TH1: \(\hept{\begin{cases}5x-2\ge0\\3-5x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge\frac{2}{5}\\x\le\frac{3}{5}\end{cases}}\Leftrightarrow\frac{2}{5}\le x\le\frac{3}{5}\)
TH2: \(\hept{\begin{cases}5x-2\le0\\3-5x\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le\frac{2}{5}\\x\ge\frac{3}{5}\end{cases}}\)(loại)
Vậy GTNN của P là 1 khi \(\frac{2}{5}\le x\le\frac{3}{5}\)
Mình sửa lại đề bài nhaaaa
Tính GTNN của biểu thức: \(P=\sqrt{25x^2-20x+4}+\sqrt{25x^2-30x+9}\)
Ta có: \(P=\sqrt{\left(5x-2\right)^2}+\sqrt{\left(5x-3\right)^2}\)
\(\Leftrightarrow P=\left|5x-2\right|+\left|5x-3\right|\)
Vì \(\left|5x-3\right|=\left|3-5x\right|\)\(\Rightarrow\)\(P=\left|5x-2\right|+\left|5x-3\right|\ge\left|5x-2+3-5x\right|=1\)
Vậy \(P_{min}=1\)\(\Leftrightarrow\)\(\frac{2}{5}\le x\le\frac{3}{5}\)
Bài này ko tìm đc GTLN nha bn
***CHÚC BẠN HỌC TỐT***