\(\dfrac{x+4}{2010}\)+\(\dfrac{x+3}{2011}\)=\(\dfrac{x+2}{2012}\)+\(\dfrac{x+1}{2013}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta thấy:
$|x-3|+|x-5|=|x-3|+|5-x|\geq |x-3+5-x|=2$ nên không tồn tại $x$ thỏa mãn $|x-3|+|x-5|=0,(6)$
\(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}=\dfrac{x+1}{13}+\dfrac{x+1}{14}\)
\(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}-\dfrac{x+1}{13}-\dfrac{x+1}{14}=0\)\(\left(x+1\right)\times\dfrac{1}{10}+\left(x+1\right)\times\dfrac{1}{11}+\left(x+1\right)\times\dfrac{1}{12}-\left(x+1\right)\times\dfrac{1}{13}-\left(x+1\right)\times\dfrac{1}{14}=0\)
\(\left(x+1\right)\times\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\right)=0\)
Vì \(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}>0\)
=> \(x+1=0\)
\(x=0-1\)
\(x=-1\)
\(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}=\dfrac{x+1}{13}+\dfrac{x+1}{14}\\ \Rightarrow\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}-\dfrac{x+1}{13}-\dfrac{x+1}{14}=0\\ \Rightarrow\left(x+1\right)\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\right)=0\\ \Rightarrow x+1=0\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\ne0\right)\\ \Rightarrow x=-1\)
b) Ta có:
P(x) + H(x) = x4 - x3 + 2x2 + x + 1
=> H(x) = x4 - x3 + 2x2 + x + 1 - P(x)
=> H(x) = (x4 - x3 + 2x2 + x + 1) - (2x4 - x2 + x - 2)
=> H(x) = -x4 - x3 + 3x2 + 3
Vậy H(x) = -x4 - x3 + 3x2 + 3
Bạn nên ghi đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn. Viết như thế này khá khó đọc.
\(4x-\dfrac{5}{6}=2x+\dfrac{2}{3}\)
\(4x-2x=\dfrac{2}{3}+\dfrac{5}{6}\)
\(x\left(4-2\right)=\dfrac{3}{2}\)
\(x\times2=\dfrac{3}{2}\)
\(x=\dfrac{3}{2}\div2\)
\(x=\dfrac{3}{4}\)
\(4x-\dfrac{5}{6}=2x+\dfrac{2}{3}\)
\(4x-\dfrac{5}{6}-2x-\dfrac{2}{3}=0\)
\(2x-\dfrac{3}{2}=0\)
\(2x=\dfrac{3}{2}\)
\(x=\dfrac{3}{4}\)
\(\left(\dfrac{1}{2}\right)^3.\left(\dfrac{3}{2}\right)^3\)
=\(\dfrac{1}{8}.\dfrac{27}{8}\)
=\(\dfrac{27}{64}\)
27 < 813 : 3x <243
⇒ 33 < (34)3 : 3x <35
⇒ 33 < 312 : 3x <35
⇒ 33 < 312-x <35
⇒ 3 <12-x < 5
⇒ -9 < x < 7
1) ab=2 (I); bc=3 (II); ca=54 (III)
Lấy (I).(II).(III) ⇒ a2 . b2 . c2 = 324 ⇒ abc = ±18
(II) ⇒ a= ±6 ; (I) ⇒ b= ±1/3 ; (II) ⇒ c= ±9
2) ab=5/3 (I); bc=4/5 (II); ca=3/4 (III)
Lấy (I).(II).(III) ⇒ a2 . b2 . c2 = 1 ⇒ abc = ±1
(II) ⇒ a= ±5/4 ; (I) ⇒ b= ±4/3 ; (II) ⇒ c= ±3/5
3) a(a+b+c)= -12 (I)
b(a+b+c)= 18 (II)
c(a+b+c)= 30 (III)
Lấy (I)+(II)+(III) ⇒ (a+b+c)2 = 36 ⇒ a+b+c = ±6
TH1 : a=6 ⇒ a= -12/6 = -2 ; b= 18/6 = 3 ; c= 30/6 = 5
TH2 : a=-6 ⇒ a= -12/-6 = 2 ; b= 18/-6 = -3 ; c= 30/-6 = -5
\(\dfrac{x+4}{2010}+\dfrac{x+3}{2011}=\dfrac{x+2}{2012}+\dfrac{x+1}{2013}\)
\(\left(\dfrac{x+4}{2010}+1\right)+\left(\dfrac{x+3}{2011}+1\right)=\left(\dfrac{x+2}{2012}+1\right)+\left(\dfrac{x+1}{2013}+1\right)\)
\(\dfrac{x+2014}{2010}+\dfrac{x+2014}{2011}-\dfrac{x+2014}{2012}-\dfrac{x+2014}{2013}=0\)
\(\left(x+2014\right)\times\left(\dfrac{1}{2010}+\dfrac{1}{2011}-\dfrac{1}{2012}-\dfrac{1}{2013}\right)=0\)
Vì \(\dfrac{1}{2010}+\dfrac{1}{2011}-\dfrac{1}{2012}-\dfrac{1}{2013}\ne0\)
=> \(x+2014=0\)
\(x=0-2014\)
\(x=-2014\)