K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2022

Kẻ tiếp tuyến Ax của đường tròn (O).

Trong tam giác ABH vuông tại H có đường cao HE nên ta có \(AH^2=AE.AB\)

Tương tự, ta cũng có \(AH^2=AF.AC\), từ đó suy ra \(AE.AB=AF.AC\) hay \(\dfrac{AE}{AC}=\dfrac{AF}{AB}\) 

Xét \(\Delta AEF\) và \(\Delta ACB\) có \(\dfrac{AE}{AC}=\dfrac{AF}{AB}\left(cmt\right)\) và \(\widehat{A}\) chung

\(\Rightarrow\Delta AEF~\Delta ACB\left(c.g.c\right)\) \(\Rightarrow\widehat{AEF}=\widehat{ACB}\) (1)

Mặt khác, trong đường tròn (O) có \(\widehat{BAx}\) và \(\widehat{ACB}\) lần lượt là góc tạo bởi tiếp tuyến và dây cung, và góc nội tiếp cùng chắn \(\stackrel\frown{AB}\) nên ta có \(\widehat{BAx}=\widehat{ACB}\) (2)

Từ (1) và (2) \(\Rightarrow\widehat{AEF}=\widehat{BAx}\) \(\Rightarrow EF//Ax\) (2 góc so le trong bằng nhau)

Lại có Ax là tiếp tuyến tại A của (O) nên \(Ax\perp OA\) tại A, dẫn đến \(OA\perp EF\) (đpcm)

13 tháng 6 2022

a)

CTHHPhân loại
K2OOxit bazo
MgOOxit bazo
SO2Oxit axit
CaOOxit bazo
CO2Oxit axit
N2OOxit trung tính
N2O5Oxit axit
Fe2O3Oxit bazo
P2O5Oxit axit
SO2 (ở trên có rồi nhé :) 

 

b)

\(K_2O+H_2O\rightarrow2KOH\)

\(SO_2+H_2O\rightarrow H_2SO_3\)

\(CaO+H_2O\rightarrow Ca\left(OH\right)_2\)

\(CO_2+H_2O\rightarrow H_2CO_3\)

\(N_2O_5+H_2O\rightarrow2HNO_3\)

\(P_2O_5+3H_2O\rightarrow2H_3PO_4\)

c)

\(K_2O+2HCl\rightarrow2KCl+H_2O\)

\(MgO+2HCl\rightarrow MgCl_2+H_2O\)

\(CaO+2HCl\rightarrow CaCl_2+H_2O\)

\(Fe_2O_3+6HCl\rightarrow2FeCl_3+3H_2O\)

d)

\(2NaOH+SO_2\rightarrow Na_2SO_3+H_2O\)

\(2NaOH+CO_2\rightarrow Na_2CO_3+H_2O\)

\(2NaOH+N_2O_5\rightarrow2NaNO_3+H_2O\)

\(6NaOH+P_2O_5\rightarrow2Na_3PO_4+3H_2O\)

- Có các oxit không tác dụng với NaOH nhưng tác dụng với nước trong dung dịch:

\(K_2O+H_2O\rightarrow2KOH\)

\(CaO+H_2O\rightarrow Ca\left(OH\right)_2\)

17 tháng 6 2022

loading...  loading...  

13 tháng 6 2022

a) Ta có : 

VT : \(\dfrac{\left(x\sqrt{y}+y\sqrt{x}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}\)

\(=\dfrac{\left(\sqrt{x^2y}+\sqrt{xy^2}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}\)

\(=\dfrac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)\)

\(=\left(\sqrt{x}\right)^2-\left(\sqrt{y}\right)^2=x-y\)  với \(x>0;y>0\)

VT\(=\)VP nên đẳng thức được chứng minh.

b) Vì \(x>0\) nên \(\sqrt{x^3}=\left(\sqrt{x}\right)^3\)

Ta có : 

VT \(\dfrac{\sqrt{x^3}-1}{\sqrt{x}-1}=\dfrac{\left(\sqrt{x}\right)^3-1^3}{\sqrt{x}-1}=\dfrac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}-1}\)

\(=x+\sqrt{x}+1\) với \(x\ge0;x\ne1\)

VT\(=\)VP nên đẳng thức được chứng minh.

DD
13 tháng 6 2022

\(\dfrac{1}{x-1}+\dfrac{6}{3x+5}=\dfrac{2}{x+2}+\dfrac{1}{x+3}\) (ĐK: \(x\notin\left\{1,-\dfrac{5}{3},-2,-3\right\}\))

\(\Rightarrow\left(3x+5\right)\left(x+2\right)\left(x+3\right)+6\left(x-1\right)\left(x+2\right)\left(x+3\right)=2\left(x-1\right)\left(3x+5\right)\left(x+3\right)+\left(x-1\right)\left(3x+5\right)\left(x+2\right)\)

\(\Leftrightarrow7x^2+24x+17=0\)

\(\Leftrightarrow\left(7x+17\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-17}{7}\\x=-1\end{matrix}\right.\) (thỏa mãn) 

AH
Akai Haruma
Giáo viên
12 tháng 6 2022

Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn!

12 tháng 6 2022

\(\Leftrightarrow\left\{{}\begin{matrix}2x^2+4x+y^3+3=0\\x^2y^3+y=2x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x^2+2\left(x^2y^3+y\right)+y^3+3=0\left(1\right)\\x^2y^3+y=2x\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow2x^2+2x^2y^3+2y+y^3+3=0\Leftrightarrow\left(y+1\right)\left(2x^2y^2-2x^2y+y^2+2x-y+3\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=-1\Rightarrow x=-1\\2x^2y^2-2x^2y+y^2+2x^2-y+3=0\left(3\right)\end{matrix}\right.\)

\(\left(3\right)\Leftrightarrow2x^2\left(y^2-y+2\right)+y^2-y+3=0\)

\(\Rightarrow a=y^2-y+2=\left(y-\dfrac{1}{2}\right)^2+\dfrac{7}{4}>0\)

\(\Delta=0-4.2\left(y^2-y+2\right)\left(y^2-y+3\right)=-8\left(y^2-y+2\right)\left(y^2-y+3\right)\)

\(y^2-y+3=\left(y-\dfrac{1}{2}\right)^2+\dfrac{11}{4}>0\)

\(\Rightarrow\Delta=-8\left(y^2-y+2\right)\left(y^2-y+3\right)< 0\)

\(\Rightarrow\left(3\right)\) không tồn tại nghiệm (x;y) nào

do đó hpt có  nghiệm x=y=-1

AH
Akai Haruma
Giáo viên
12 tháng 6 2022

Lời giải:
ĐKXĐ: $x\neq -1$

PT $\Leftrightarrow (x-\frac{x}{x+1})^2+4=\frac{5x^2}{x+1}$

$\Leftrightarrow (\frac{x^2}{x+1})^2+4=\frac{5x^2}{x+1}$
Đặt $\frac{x^2}{x+1}=a$ thì pt trở thành:
$a^2+4=5a$

$\Leftrightarrow (a-1)(a-4)=0$

$\Leftrightarrow a=1$ hoặc $a=4$

Nếu $a=1\Leftrightarrow \frac{x^2}{x+1}=1$

$\Rightarrow x^2-x-1=0$

$\Leftrightarrow x=\frac{1\pm \sqrt{5}}{2}$

Nếu $a=4\Leftrightarrow \frac{x^2}{x+1}=4$

$\Rightarrow x^2-4x-4=0$

$\Leftrightarrow x=2\pm 2\sqrt{2}$