Chứng tỏ các đa thức sau ko có nghiệm
a, x2 + 4x +10
b, x2 - 2x + 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, (\(\dfrac{9}{4}\))5 : (\(\dfrac{1}{4}\))5
= (\(\dfrac{9}{4}\) : \(\dfrac{1}{4}\))5
= 95
= 59049
b, 182 : 92
= (18:9)2
= 22
= 4
c, [(-2)\(^4\)]3
= 212
= 4096
d, 57.(\(\dfrac{1}{5}\))7
= (5.\(\dfrac{1}{5}\))7
= 17
= 1
e, (6,5)3: (6,5)2
= 6,5
3.(\(x\) - 2)4 = 45
( \(x\) - 2)4 = 45: 3
(\(x\) - 2)4 = 15
\(\left[{}\begin{matrix}x-2=\sqrt[4]{15}\\x-2=-\sqrt[4]{15}\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=2+\sqrt[4]{15}\\x=2-\sqrt[4]{15}\end{matrix}\right.\)
\(\dfrac{6}{7}< 1< \dfrac{7}{4}\Rightarrow0>-\dfrac{6}{7}>-\dfrac{7}{4}\left(1\right)\)
\(\dfrac{8}{13}=\dfrac{8.3}{13.3}=\dfrac{24}{39}< 0< \dfrac{2}{3}=\dfrac{2.13}{3.13}=\dfrac{26}{39}\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow-\dfrac{7}{4}< -\dfrac{6}{7}< 0< \dfrac{8}{13}< \dfrac{2}{3}\)
a, 5n+1 - 5n-1 = 1254.23.3
5n-1.(52 - 1) = 1254.24
5n-1.24 = 1254.24
5n-1 = 1254
5n-1 = (53)4
5n-1 = 512
n - 1 = 12
n = 12 + 1
n = 13
b,22n-1 + 22n+2 = 3.211
22n-1.(1 + 23) = 3.211
22n-1.9 = 3.211
22n-1 = 211: 3
22n = 212 : 3 (xem lại đề bài em nhá)
\(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+...+\dfrac{1}{x.\left(2x+1\right)}=\dfrac{1}{10}\)
\(\Leftrightarrow\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+...+\dfrac{1}{2x.\left(2x+1\right)}=\dfrac{1}{20}\)
\(\Leftrightarrow\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{2x.\left(2x+1\right)}=\dfrac{1}{20}\)
\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{2x}-\dfrac{1}{2x+1}=\dfrac{1}{20}\)
\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{2x+1}=\dfrac{1}{20}\)
\(\Leftrightarrow\dfrac{1}{2x+1}=\dfrac{9}{20}\)
\(\Leftrightarrow2x+1=\dfrac{20}{9}\Leftrightarrow x=\dfrac{11}{18}\)
Em giải như XYZ olm em nhé
Sau đó em thêm vào lập luận sau:
\(x\) = \(\dfrac{11}{18}\)
Vì \(\in\) N*
Vậy \(x\in\) \(\varnothing\)
\(\dfrac{1}{15}\) + \(\dfrac{1}{21}\) + \(\dfrac{1}{28}\) + \(\dfrac{1}{36}\) +...+ \(\dfrac{2}{x\left(x+1\right)}\) = \(\dfrac{11}{40}\) (\(x\in\) N*)
\(\dfrac{1}{2}\).(\(\dfrac{1}{15}\)+\(\dfrac{1}{21}\)+\(\dfrac{1}{28}\)+\(\dfrac{1}{36}\)+.....+ \(\dfrac{2}{x\left(x+1\right)}\)) = \(\dfrac{11}{40}\) \(\times\) \(\dfrac{1}{2}\)
\(\dfrac{1}{30}\) + \(\dfrac{1}{42}\) + \(\dfrac{1}{56}\) + \(\dfrac{1}{72}\)+...+ \(\dfrac{1}{x\left(x+1\right)}\) = \(\dfrac{11}{80}\)
\(\dfrac{1}{5.6}\) + \(\dfrac{1}{6.7}\) + \(\dfrac{1}{7.8}\)+...+ \(\dfrac{1}{x\left(x+1\right)}\) = \(\dfrac{11}{80}\)
\(\dfrac{1}{5}\) - \(\dfrac{1}{6}\) + \(\dfrac{1}{6}\) - \(\dfrac{1}{7}\) + \(\dfrac{1}{7}\) - \(\dfrac{1}{8}\) + \(\dfrac{1}{8}\)-\(\dfrac{1}{9}\)+...+ \(\dfrac{1}{x}\)-\(\dfrac{1}{x+1}\) = \(\dfrac{11}{80}\)
\(\dfrac{1}{5}\) - \(\dfrac{1}{x+1}\) = \(\dfrac{11}{80}\)
\(\dfrac{1}{x+1}\) = \(\dfrac{1}{5}\) - \(\dfrac{11}{80}\)
\(\dfrac{1}{x+1}\) = \(\dfrac{1}{16}\)
\(x\) + 1 = 16
\(x\) = 16 - 1
\(x\) = 15
- \(\dfrac{1}{4}\) = \(-\dfrac{1.3}{4.3}\) = \(\dfrac{-3}{12}\)
- \(\dfrac{1}{5}\) = \(\dfrac{-1.3}{3.5}\) = \(\dfrac{-3}{15}\)
Ba số hữu tỉ nằm giữa hai số hữu tỉ - \(\dfrac{1}{4}\); - \(\dfrac{1}{5}\) là ba số hữu tỉ nằm giữa hai số hữu tỉ: - \(\dfrac{3}{12}\) và - \(\dfrac{3}{15}\)
Đó lần lượt là các số hữu tỉ sau:
-\(\dfrac{3}{13};\) - \(\dfrac{3}{14}\);
a, \(x^2\) + 4\(x\) + 10
= ( \(x^2\) + 4\(x\) + 4) + 6
= (\(x\) + 2)2 + 6
vì (\(x\) + 2)2 ≥ 0
⇒ (\(x\) + 2)2 + 6 ≥ 6 > 0 vậy đa thức đã cho vô nghiệm (đpcm)
b, \(x^2\) - 2\(x\) + 5
= (\(x^2\) - 2\(x\) + 1) + 4
= (\(x\) - 1)2 + 4
Vì (\(x\) - 1)2 ≥ 0 ⇒ (\(x\) -1)2 + 4≥ 4 > 0
Vậy đa thức đã cho vô nghiệm (đpcm)