chứng minh m^2-n^2=2m-2n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


3x+25=26x22+2x30
3x+25=26x4+2
3x+25=106
3x=106-25=81
3x=34
⇒ x=4

a) Ta có AD = AB và AE = CD. Vì AD = AB, nên tam giác ABD là tam giác cân tại A. Tương tự, tam giác AEC là tam giác cân tại A. Do đó, ta có ∠ABD = ∠BAD và ∠CAE = ∠EAC. Vì ∠BAD = ∠CAE, nên ∠ABD = ∠EAC. Vì tam giác ABD và tam giác AEC là tam giác cân tại A, nên ta có BD = AB và CE = AE. Do đó, ta có BD = AB = AE = CE. b) Ta có BD = AB và CE = AE. Vì BD = AB và CE = AE, nên ta có BD = CE. Vì BD = CE, nên tam giác BCD là tam giác cân tại B. Vì tam giác BCD là tam giác cân tại B, nên ta có ∠BCD = ∠CBD. Vì ∠BCD = ∠CBD, nên ∠BCD + ∠CBD = 180°. Do đó, ta có ∠BCD + ∠CBD = 180°. Vì ∠BCD + ∠CBD = 180°, nên tam giác BCD là tam giác đều. Vì tam giác BCD là tam giác đều, nên ta có BE = CD. c) Gọi M là trung điểm của BE và N là trung điểm của CD. Vì M là trung điểm của BE, nên ta có BM = ME. Vì N là trung điểm của CD, nên ta có CN = ND. Vì BM = ME và CN = ND, nên ta có BM + CN = ME + ND. Do đó, ta có BM + CN = ME + ND. Vì BM + CN = ME + ND, nên ta có BN = MD. Vì BN = MD, nên tam giác BMD là tam giác cân tại B. Vì tam giác BMD là tam giác cân tại B, nên ta có ∠BMD = ∠BDM. Vì ∠BMD = ∠BDM, nên ∠BMD + ∠BDM = 180°. Do đó, ta có ∠BMD + ∠BDM = 180°. Vì ∠BMD + ∠BDM = 180°, nên tam giác BMD là tam giác đều. Vì tam giác BMD là tam giác đều, nên ta có BM = MD. Vì BM = MD, nên ta có BM = MD = AM. Vậy ta có AM = AN.

Đính chính lại
\(...2^{1+2+...+x}< 2^{11}\Rightarrow2^{\dfrac{x\left(x+1\right)}{2}}< 2^{11}\Rightarrow\dfrac{x\left(x+1\right)}{2}< 11\)
\(\Rightarrow x\left(x+1\right)< 22\)
Vì \(4.5=20< 22;5.6=30>22\)
\(\Rightarrow x=4\left(x\in N\right)\) lớn nhất thỏa mãn (1)
\(2.2^2.2^3....2^x< 2^{11}\left(1\right)\)
\(\Rightarrow2^{1+2+...+x}< 2^{11}\)
\(\Rightarrow2^{x\left(x+1\right)}< 2^{11}\)
\(\Rightarrow x\left(x+1\right)< 11\)
vì \(2.\left(2+1\right)=6< 11;3.\left(3+1\right)=12>11\)
\(\Rightarrow x=2\left(x\in N\right)\) lớn nhất thỏa mãn (1)

`@` `\text {Ans}`
`\downarrow`
\(3^{x-3}+3^{x-1}=90\) phải k c?
`=>`\(3^x\div3^3+3^x\div3=90\)
`=>`\(3^x\cdot\dfrac{1}{3^3}+3^x\cdot\dfrac{1}{3}=90\)
`=>`\(3^x\cdot\left(\dfrac{1}{3^3}+\dfrac{1}{3}\right)=90\)
`=>`\(3^x\cdot\dfrac{10}{27}=90\)
`=>`\(3^x=90\div\dfrac{10}{27}\)
`=>`\(3^x=243\)
`=>`\(3^x=3^5\)
`=> x = 5`
Vậy, `x = 5.`
bạn bấm vào kí hiệu \(\Sigma\) góc bên trái màn hình để mọi người có thể hiểu được đề của bạn nhé!

\(...\Rightarrow7^{x+1}+7^x.7.6=7^{27}\)
\(\Rightarrow7^{x+1}+7^{x+1}.6=7^{27}\)
\(\Rightarrow7^{x+1}.\left(1+6\right)=7^{27}\)
\(\Rightarrow7^{x+1}.7=7^{27}\)
\(\Rightarrow7^{x+2}=7^{27}\Rightarrow x+2=27\Rightarrow x=25\)

O a b c x y Gọi hai góc kề bù là \(\widehat{aOc}\) và \(\widehat{cOb}\)
sau đó lần lượt gọi Ox và Oy là 2 tia phân giác của 2 góc
Từ đó ta có:
\(\widehat{xOy}=\dfrac{1}{2}\left(\widehat{aOb}+\widehat{bOc}\right)=\dfrac{1}{2}\cdot180^o=90^o\)
=>\(Ox\perp Oy\) (đpcm)
Gọi \(A_1;A_2\) lần lượt là 2 góc phân giác trong của góc A
Gọi \(A_3;A_4\) lần lượt là 2 góc phân giác ngoài của góc A
Góc kề bù của A \(\Rightarrow A_{trong}+A_{ngoài}=180^o\)
mà \(A_1=A_2\left(trong\right);A_3=A_4\left(ngoài\right)\)
\(\Rightarrow2A_2+2A_4=180^o\Rightarrow A_2+A_4=90^o\)
\(\Rightarrow dpcm\)

Do góc xoz =60o
mà Om là tia pgiac của \(\widehat{zox}\)
=>\(\widehat{zOm}=\widehat{mOx}=\dfrac{60}{2}=30^o\)
Ta có: \(\widehat{yOz}+\widehat{xOz}=100^o\) (do 2 góc kề bù)
=> \(\widehat{yOz}=100^o-\widehat{xOz}\\ =100^o-60^o=40^o\)
Mà On là tia phân giác \(\widehat{yOz}\)
=>\(\widehat{yOn}=\widehat{nOz}=\widehat{yOz}:2=40^o:2=20^o\)
\(\Rightarrow\widehat{mOn}=\widehat{nOz}+\widehat{zOm}=20^o+30^o=50^o\)
Vậy góc mOn=50o
Để tính số đo của góc ∠���∠MON, ta sử dụng các thông tin đã cho:
Góc ∠���∠xOy có số đo là 100 độ.
- Góc ∠���∠xOz có số đo là 60 độ.
Do ∠���=∠���+∠���∠xOy=∠xOz+∠zOy, ta có:
100∘=60∘+∠���100∘=60∘+∠zOy.
Từ đó, ta tính được số đo của góc ∠���∠zOy:
∠���=100∘−60∘=40∘∠zOy=100∘−60∘=40∘.
Vì ∠���∠MON là góc phân giác của ∠���∠zOy, nên số đo của ∠���∠MON bằng một nửa số đo của ∠���∠zOy:
∠���=40∘2=20∘∠MON=240∘=20∘.
Vậy, số đo của góc ∠���∠MON là 20 độ.
\(m^2-n^2=2m-2n\left(1\right)\)
\(\Rightarrow\left(m-n\right)\left(m+n\right)=2\left(m-n\right)\)
\(\Rightarrow\left(m-n\right)\left(m+n\right)-2\left(m-n\right)=0\)
\(\Rightarrow\left(m-n\right)\left(m+n-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}m-n=0\\m+n-2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}m=n\\m+n=2\end{matrix}\right.\)
Vậy (1) đúng khi \(m=n\) hay \(m+n=2\)
Bạn xem lại đề.