giả sử một thùng trồng cây có chiều dài 40cm chiều rộng 30cm nếu khoảng cách giữa các cây 5cm và giữa các hàng 7cm hãy cho biết số lượng cây có thể trồng vào thùng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A\left(x\right)=-4x^2-2x-8+5x^3-7x^2+1\)
\(=5x^3+\left(-4x^2-7x^2\right)+\left(-2x\right)+\left(-8+1\right)\)
\(=5x^3-11x^2-2x-7\)
\(B\left(x\right)=-3x^3+4x^2+9+x-2x-2x^3\)
\(=\left(-3x^3-2x^3\right)+4x^2+\left(x-2x\right)+9\)
\(=-5x^3+4x^2-x+9\)
b: \(M\left(x\right)=A\left(x\right)+B\left(x\right)\)
\(=5x^3-11x^2-2x-7-5x^3+4x^2-x+9\)
\(=-7x^2-3x+2\)
N(x)=A(x)-B(x)
\(=5x^3-11x^2-2x-7+5x^3-4x^2+x-9\)
\(=10x^3-15x^2-x-16\)
c: \(M\left(2\right)=-7\cdot2^2-3\cdot2+2=-28-6+2=-32< >0\)
=>x=2 không là nghiệm của M(x)
\(N\left(2\right)=10\cdot2^3-15\cdot2^2-2-16=80-60-18=2>0\)
=>x=2 không là nghiệm của N(x)
Ta có: \(2x=3y=5z\Rightarrow\dfrac{x}{\dfrac{1}{2}}=\dfrac{y}{\dfrac{1}{3}}=\dfrac{z}{\dfrac{1}{5}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau và \(x-2y+z=14\), ta được:
\(\dfrac{x}{\dfrac{1}{2}}=\dfrac{y}{\dfrac{1}{3}}=\dfrac{2y}{\dfrac{2}{3}}=\dfrac{z}{\dfrac{1}{5}}=\dfrac{x-2y+z}{\dfrac{1}{2}-\dfrac{2}{3}+\dfrac{1}{5}}=\dfrac{14}{\dfrac{1}{30}}=420\)
\(\Rightarrow\left\{{}\begin{matrix}x=420\cdot\dfrac{1}{2}=210\\y=420\cdot\dfrac{1}{3}=140\\z=420\cdot\dfrac{1}{5}=84\end{matrix}\right.\)
$\text{#}Toru$
\(2x=3y=5z\Rightarrow\dfrac{2x}{30}=\dfrac{3y}{30}=\dfrac{5z}{30}=\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}\)
Áp dụng t/c dãy tỉ số bằng nhau:
\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}=\dfrac{x}{15}=\dfrac{2y}{20}=\dfrac{z}{6}=\dfrac{x-2y+z}{15-20+6}=\dfrac{14}{1}=14\)
\(\Rightarrow\left\{{}\begin{matrix}x=15.14=210\\y=10.14=140\\z=6.14=84\end{matrix}\right.\)
a) Do \(\Delta ABC\) cân tại A (gt)
\(\Rightarrow AB=AC\)
Xét hai tam giác vuông: \(\Delta AHB\) và \(\Delta AHC\) có:
\(AB=AC\left(cmt\right)\)
\(AH\) là cạnh chung
\(\Rightarrow\Delta AHB=\Delta AHC\) (cạnh huyền - cạnh góc vuông)
b) \(\Delta ABC\) cân tại A (gt)
\(AH\) là đường cao của \(\Delta ABC\) (gt)
\(\Rightarrow AH\) cũng là đường phân giác, đường trung tuyến của \(\Delta ABC\)
\(\Rightarrow\widehat{BAH}=\widehat{CAH}\)
\(\Rightarrow\widehat{DAH}=\widehat{HAC}\)
Do \(HD\) // \(AC\) (gt)
\(\Rightarrow\widehat{AHD}=\widehat{HAC}\)
Mà \(\widehat{DAH}=\widehat{HAC}\left(cmt\right)\)
\(\Rightarrow\widehat{AHD}=\widehat{DAH}\)
\(\Rightarrow\Delta AHD\) cân tại D
\(\Rightarrow AD=DH\)
c) Do \(\Delta ABC\) cân tại A (gt)
\(\Rightarrow\widehat{ABC}=\widehat{ACB}\)
\(\Rightarrow\widehat{DBH}=\widehat{ACB}\)
Do \(HD\) // \(AC\) (gt)
\(\Rightarrow\widehat{DHB}=\widehat{ACB}\) (đồng vị)
Mà \(\widehat{DBH}=\widehat{ACB}\left(cmt\right)\)
\(\Rightarrow\widehat{DHB}=\widehat{DBH}\)
\(\Rightarrow\Delta BHD\) cân tại D
\(\Rightarrow DH=BD\)
Mà \(DH=AD\left(cmt\right)\)
\(\Rightarrow AD=BD\)
\(\Rightarrow D\) là trung điểm của AB
\(\Rightarrow CD\) là đường trung tuyến của \(\Delta ABC\)
Lại có \(AH\) là đường trung tuyến của \(\Delta ABC\)
\(\Rightarrow G\) là trọng tâm của \(\Delta ABC\)
Do \(E\) là trung điểm của AC (gt)
\(\Rightarrow BE\) là đường trung tuyến của \(\Delta ABC\)
Mà \(G\) là trọng tâm của \(\Delta ABC\) (cmt)
\(\Rightarrow B,G,E\) thẳng hàng
\(\Rightarrow AH\) cũng là đường trung tuyến
\(2x^3-4x^2+3x+a-10=2x^3-4x^2+3x-6+a-4\)
\(=\left(2x^3-4x^2\right)+\left(3x-6\right)+a-4\)
\(=2x^2\left(x-2\right)+3\left(x-2\right)+a-4\)
\(\Rightarrow\left(2x^3-4x^2+3x+a-10\right):\left(x-2\right)\)
\(=\left[2x^2\left(x-2\right)+3\left(x-2\right)+a-4\right]:\left(x-2\right)\)
\(=2x^2+3+\dfrac{a-4}{x-2}\)
Để đa thức đã cho chia hết cho \(x-2\) thì \(a-4=0\)
\(\Rightarrow a=4\)
a: Sửa đề; MF vuông góc với AC tại F
Xét ΔBEM vuông tại E và ΔCFM vuông tại F có
BM=CM
\(\widehat{MBE}=\widehat{MCF}\)
Do đó: ΔBEM=ΔCFM
b: Ta có: ΔBEM=ΔCFM
=>ME=MF
=>M nằm trên đường trung trực của EF(1)
ta có: ΔBEM=ΔCFM
=>BE=CF
Ta có: AE+EB=AB
AF+FC=AC
mà BE=FC và AB=AC
nên AE=AF
=>A nằm trên đường trung trực của EF(2)
Từ (1),(2) suy ra AM là đường trung trực của EF
c: Xét ΔABC có \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)
nên EF//BC
d: Xét ΔABD vuông tại B và ΔACD vuông tại C có
AD chung
AB=AC
Do đó: ΔABD=ΔACD
=>DB=DC
=>D nằm trên đường trung trực của BC(3)
ta có: AB=AC
=>A nằm trên đường trung trực của BC(4)
ta có: MB=MC
=>M nằm trên đường trung trực của BC(5)
Từ (3),(4),(5) suy ra A,M,D thẳng hàng
a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó: ΔBAD=ΔBHD
b: ΔBAD=ΔBHD
=>DA=DH
Xét ΔDAK vuông tại A và ΔDHC vuông tại H có
DA=DH
AK=HC
Do đó: ΔDAK=ΔDHC
=>\(\widehat{ADK}=\widehat{HDC}\)
=>\(\widehat{ADK}+\widehat{ADH}=180^0\)
=>K,D,H thẳng hàng
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
AB=AC
\(\widehat{BAD}\) chung
Do đó: ΔADB=ΔAEC
b: Xét ΔCDB vuông tại D và ΔCDK vuông tại D có
CD chung
DB=DK
Do đó: ΔCDB=ΔCDK
=>CB=CK
=>ΔCBK cân tại C
c:
Ta có: ΔADB=ΔAEC
=>AD=AE
Xét ΔABC có \(\dfrac{AE}{AB}=\dfrac{AD}{AC}\)
nên ED//BC
=>\(\widehat{EDB}=\widehat{DBC}\)
=>\(\widehat{EDB}=\widehat{DKC}\)
a: Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔABD=ΔEBD
b: Ta có: AH\(\perp\)BC
DE\(\perp\)BC
Do đó: AH//DE
Ta có: \(\widehat{BIH}+\widehat{HBI}=90^0\)(ΔHBI vuông tại H)
\(\widehat{ADI}+\widehat{ABD}=90^0\)(ΔABD vuông tại A)
mà \(\widehat{HBI}=\widehat{ABD}\)
nên \(\widehat{BIH}=\widehat{ADI}\)
=>\(\widehat{ADI}=\widehat{AID}\)
=>ΔAID cân tại A
c: Ta có: \(\widehat{CAE}+\widehat{BAE}=\widehat{BAC}=90^0\)
\(\widehat{HAE}+\widehat{BEA}=90^0\)
mà \(\widehat{BAE}=\widehat{BEA}\)(ΔBAE cân tại B)
nên \(\widehat{CAE}=\widehat{HAE}\)
=>AE là phân giác của góc HAC
\(4x^3-x^2-ax+b⋮x^2+1\)
=>\(4x^3+4x-x^2-1+\left(-a-4\right)x+b+1⋮x^2+1\)
=>-a-4=0 và b+1=0
=>a=-4 và b=-1
Để tiết kiệm đất trồng và trồng được nhiều cây nhất thì lối biên sẽ nhỏ hơn 5 cm (khoảng cách giữa các cây) khi đó ta có hai trường hợp sau:
TH1: Khoảng cách giữa các hàng là 7cm (theo chiều dài của thùng) thì ta có hình vẽ sau:
Khi đó số hàng là: 6 (hàng), số cây của mỗi hàng là: 6 (cây).
Suy ra có thể trồng 6.6 = 36 (cây).
TH2: Khoảng cách giữa các hàng là 5cm (theo chiều dài của thùng) thì ta có hình vẽ sau:
Khi đó số hàng tối đa là: 8 (hàng), số cây của mỗi hàng là: 5 (cây).
Suy ra có thể trồng 8.5 = 40 (cây).