Cho tam giác ABC nhọn có AB < AC và đường cao BM, CN cắt nhau tại H. a) Chứng minh tam giác AHN đồng dạng tam giác CBN, từ đó suy ra AH.CN = BC.AN. b) Gọi I, K lần lượt là trung điểm của AH và BC. Đường thẳng vuông góc với AC tại C cắt IK tại E. Chứng minh IK // AE. c) Chứng minh IK là trung trực của MN d) Khi tam giác ABC có cạnh BC cố định, điểm A thay đổi nhưng sao cho tam giác ABC nhọn. Chứng minh BH.BM + CH.CN có giá trị không đổi.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Lỗi quan hệ từ
Sửa: Nó không chỉ ngoan mà còn rất lễ phép.
b) Lỗi quan hệ từ
Sửa: Vì trời mưa nên đường lầy lội.
c) Lỗi quan hệ từ
Sửa: Tố Hữu là một nhà thơ lớn, ông đã hoạt động cách mạng từ thời thơ ấu.
d) Lỗi từ ngữ
Sửa: Kiên không những học giỏi mà còn rất chăm chỉ nên bạn ấy được điểm 10.
e) Lỗi dấu câu và quan hệ từ.
Sửa: Do trời mưa nên đường phố tấp nập xe cộ ngược xuôi dần thưa thớt.
f) Lỗi quan hệ từ
Sửa: Các bạn ấy rất yêu văn nghệ và đi dã ngoại.
\(n_{Ba}=\dfrac{54,8}{137}=0,4\left(mol\right)\\ Ba+2H_2O\rightarrow Ba\left(OH\right)_2+H_2\\ n_B=n_{H_2}=n_{Ba}=0,4\left(mol\right)\\ V_{H_2\left(đktc\right)}=0,4.22,4=8,96\left(l\right)\)
Số gam nước cần dùng để hoà tan 45 gam muối ăn tạo dung dịch bão hoà là:
\(m_{H_2O}=\dfrac{45}{36}.100=125\left(g\right)\)
Vậy nếu hoà 45 gam muối ăn vào 120 gam nước thì dung dịch chưa bão hoà.
Lời giải:
a. Xét tam giác $AHB$ và $CHA$ có:
$\widehat{AHB}=\widehat{CHA}=90^0$
$\widehat{HAB}=\widehat{HCA}$ (cùng phụ với $\widehat{HAC}$)
$\Rightarrow \triangle AHB\sim \triangle CHA$ (g.g)
b.
$BH=\sqrt{AB^2-AH^2}=\sqrt{15^2-12^2}=9$ (cm)
Từ tam giác đồng dạng phần a suy ra $CH=\frac{AH^2}{BH}=\frac{12^2}{9}=16$ (cm)
$AC=\sqrt{AH^2+CH^2}=\sqrt{12^2+16^2}=20$ (cm)
Chu vi nửa khu vườn là:
64/2= 32 m
Chiều dài khu vườn là:
32/\(\left(3+1\right)\)*3= 24 m
Chiều rộng khu vườn là:
32-24= 8 m
Diện tích khu vườn đó là:
24*8= 192 m2
A. Để chứng minh rằng $\triangle ABH \sim \triangle CAH$, ta cần chứng minh tỉ số đồng dạng giữa các cặp cạnh tương ứng của hai tam giác này bằng nhau.
Ta có:
- Góc $\angle BAH$ là góc vuông, nên $\angle BAH = \angle CAH = 90^\circ$.
- Cạnh chung $AH$ của hai tam giác này có độ dài bằng nhau.
Vậy, theo định lí góc - cạnh - góc, ta có:
$$\frac{AB}{AH} = \frac{10}{AH} = \frac{AH}{AC} = \frac{AH}{16}$$
Từ đó suy ra:
$$\frac{AB}{AH} = \frac{AH}{AC} \Rightarrow \triangle ABH \sim \triangle CAH$$
B. Ta có:
- Tỉ số đồng dạng giữa hai tam giác $\triangle ABH$ và $\triangle ABC$ là:
$$k = \frac{AB}{AC} = \frac{10}{16} = \frac{5}{8}$$
- Tỉ số đồng dạng giữa hai tam giác $\triangle CAH$ và $\triangle ABC$ là:
$$k' = \frac{AC}{AB} = \frac{16}{10} = \frac{8}{5}$$
Vậy, ta đã suy ra được tỉ số đồng dạng giữa các cạnh của ba tam giác $\triangle ABH$, $\triangle CAH$ và $\triangle ABC$.
Do đó, ta có:
$$BC = AB \times k' = 10 \times \frac{8}{5} = 16$$
$$AH = AC \times k = 16 \times \frac{5}{8} = 10$$
C. Để tính diện tích của các tam giác này, ta sử dụng công thức:
$$S = \frac{1}{2} \times cạnh\ gần\ đáy \times độ\ cao$$
- Diện tích của tam giác $\triangle ABH$ là:
$$S_{ABH} = \frac{1}{2} \times AB \times AH = \frac{1}{2} \times 10 \times 10 = 50\ cm^2$$
- Diện tích của tam giác $\triangle CAH$ là:
$$S_{CAH} = \frac{1}{2} \times AC \times AH = \frac{1}{2} \times 16 \times 10 = 80\ cm^2$$
- Diện tích của tam giác $\triangle ABC$ là:
$$S_{ABC} = \frac{1}{2} \times AB \times AC = \frac{1}{2} \times 10 \times 16 = 80\ cm^2$$
Ta có:
x^3 + y^3 + x^2 + y^2 = 2xy(x+y)
Đặt S = x + y, P = xy, ta có:
x^3 + y^3 + x^2 + y^2 = (x+y)(x^2 + y^2) = (x+y)^3 - 3xy(x+y) = S^3 - 3PS
Vậy ta có:
S^3 - 3PS + S^2 - 2P = 0
S^3 + S^2 - 3PS - 2P = S(S^2 + S - 3P) - 2P = 0
Do đó, ta có:
S^2 + S - 3P = 0
Sử dụng công thức Viết để tính nghiệm của phương trình bậc hai này, ta được:
S = (-1 + sqrt(1 + 12P))/2 hoặc S = (-1 - sqrt(1 + 12P))/2
Vì x và y là các số thực dương, nên ta chỉ quan tâm đến nghiệm dương của S, tức là:
S = (-1 + sqrt(1 + 12P))/2
Tiếp theo, ta có:
K = x^3 + y^3 + 3/(x^2 + y^2) + 2/((x+y)^2)
= S^3 - 3PS + 3/(S^2 - 2P) + 2/(S^2)
= S^3 - 3PS + 3S^2/(S^2 - 2P) + 2/(S^2)
= S^3 - 3PS + 3S^2/(S^2 - 2P) + 2S^2/(S^2 * (S^2 - 2P))
= S^3 - 3PS + (5S^4 - 6PS^2)/(S^2 * (S^2 - 2P))
= S^3 - 3PS + (5S^4 - 6PS^2)/(S^2 * (S^2 + 1 - 2xy))
= S^3 - 3PS + (5S^4 - 6PS^2)/((S^2 + 1)^2 - 2(S^2-1)P)
= S^3 - 3PS + (5S^4 - 6PS^2)/((S^2 + 1)^2 - 2(S^2-1)(S^3 - 3PS))
= S^3 - 3PS + (5S^4 - 6PS^2)/(-2S^5 + 10S^3 - 2PS^2 + 2P)
= S^3 - 3PS + (5S^4 - 6PS^2)/(2S^5 - 10S^3 + 2PS^2 - 2P)
= S^3 - 3PS + (5S^2 - 6P)/(2S^3 - 10S +