K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2023

a) Lỗi quan hệ từ

 Sửa: Nó không chỉ ngoan mà còn rất lễ phép.
b) Lỗi quan hệ từ

 Sửa: Vì trời mưa nên đường lầy lội.
c) Lỗi quan hệ từ

 Sửa: Tố Hữu là một nhà thơ lớn, ông đã hoạt động cách mạng từ thời thơ ấu.
d) Lỗi từ ngữ

 Sửa: Kiên không những học giỏi mà còn rất chăm chỉ nên bạn ấy được điểm 10. 
e) Lỗi dấu câu và quan hệ từ.

 Sửa: Do trời mưa nên đường phố tấp nập xe cộ ngược xuôi dần thưa thớt.
f) Lỗi quan hệ từ

 Sửa: Các bạn ấy rất yêu văn nghệ và đi dã ngoại.

2 tháng 5 2023

\(n_{Ba}=\dfrac{54,8}{137}=0,4\left(mol\right)\\ Ba+2H_2O\rightarrow Ba\left(OH\right)_2+H_2\\ n_B=n_{H_2}=n_{Ba}=0,4\left(mol\right)\\ V_{H_2\left(đktc\right)}=0,4.22,4=8,96\left(l\right)\)

2 tháng 5 2023

Số gam nước cần dùng để hoà tan 45 gam muối ăn tạo dung dịch bão hoà là:

\(m_{H_2O}=\dfrac{45}{36}.100=125\left(g\right)\)

Vậy nếu hoà 45 gam muối ăn vào 120 gam nước thì dung dịch chưa bão hoà.

6 tháng 5 2023

đòi ko copy thì tự làm đê bạn

 

2 tháng 5 2023

Giúp tớ với

 

AH
Akai Haruma
Giáo viên
14 tháng 7 2023

Lời giải:

a. Xét tam giác $AHB$ và $CHA$ có:

$\widehat{AHB}=\widehat{CHA}=90^0$

$\widehat{HAB}=\widehat{HCA}$ (cùng phụ với $\widehat{HAC}$)

$\Rightarrow \triangle AHB\sim \triangle CHA$ (g.g)

b.

$BH=\sqrt{AB^2-AH^2}=\sqrt{15^2-12^2}=9$ (cm) 

Từ tam giác đồng dạng phần a suy ra $CH=\frac{AH^2}{BH}=\frac{12^2}{9}=16$ (cm) 

$AC=\sqrt{AH^2+CH^2}=\sqrt{12^2+16^2}=20$ (cm)

AH
Akai Haruma
Giáo viên
15 tháng 7 2023

 

Hình vẽ:

loading...

2 tháng 5 2023

giúp mik với cần gấp để nộp cho thầy với ạ

 

2 tháng 5 2023

Chu vi nửa khu vườn là:

64/2= 32 m

Chiều dài khu vườn là:

32/\(\left(3+1\right)\)*3= 24 m

Chiều rộng khu vườn là:

32-24= 8 m

Diện tích khu vườn đó là:

24*8= 192 m2

2 tháng 5 2023

giúp mik với. Cần gấp ạaaaa

2 tháng 5 2023

A. Để chứng minh rằng $\triangle ABH \sim \triangle CAH$, ta cần chứng minh tỉ số đồng dạng giữa các cặp cạnh tương ứng của hai tam giác này bằng nhau.

Ta có:

  • Góc $\angle BAH$ là góc vuông, nên $\angle BAH = \angle CAH = 90^\circ$.
  • Cạnh chung $AH$ của hai tam giác này có độ dài bằng nhau.

Vậy, theo định lí góc - cạnh - góc, ta có:

$$\frac{AB}{AH} = \frac{10}{AH} = \frac{AH}{AC} = \frac{AH}{16}$$

Từ đó suy ra:

$$\frac{AB}{AH} = \frac{AH}{AC} \Rightarrow \triangle ABH \sim \triangle CAH$$

B. Ta có:

  • Tỉ số đồng dạng giữa hai tam giác $\triangle ABH$ và $\triangle ABC$ là:

$$k = \frac{AB}{AC} = \frac{10}{16} = \frac{5}{8}$$

  • Tỉ số đồng dạng giữa hai tam giác $\triangle CAH$ và $\triangle ABC$ là:

$$k' = \frac{AC}{AB} = \frac{16}{10} = \frac{8}{5}$$

Vậy, ta đã suy ra được tỉ số đồng dạng giữa các cạnh của ba tam giác $\triangle ABH$, $\triangle CAH$ và $\triangle ABC$.

Do đó, ta có:

$$BC = AB \times k' = 10 \times \frac{8}{5} = 16$$

$$AH = AC \times k = 16 \times \frac{5}{8} = 10$$

C. Để tính diện tích của các tam giác này, ta sử dụng công thức:

$$S = \frac{1}{2} \times cạnh\ gần\ đáy \times độ\ cao$$

  • Diện tích của tam giác $\triangle ABH$ là:

$$S_{ABH} = \frac{1}{2} \times AB \times AH = \frac{1}{2} \times 10 \times 10 = 50\ cm^2$$

  • Diện tích của tam giác $\triangle CAH$ là:

$$S_{CAH} = \frac{1}{2} \times AC \times AH = \frac{1}{2} \times 16 \times 10 = 80\ cm^2$$

  • Diện tích của tam giác $\triangle ABC$ là:

$$S_{ABC} = \frac{1}{2} \times AB \times AC = \frac{1}{2} \times 10 \times 16 = 80\ cm^2$$

2 tháng 5 2023

Ta có:

x^3 + y^3 + x^2 + y^2 = 2xy(x+y)

Đặt S = x + y, P = xy, ta có:

x^3 + y^3 + x^2 + y^2 = (x+y)(x^2 + y^2) = (x+y)^3 - 3xy(x+y) = S^3 - 3PS

Vậy ta có:

S^3 - 3PS + S^2 - 2P = 0

S^3 + S^2 - 3PS - 2P = S(S^2 + S - 3P) - 2P = 0

Do đó, ta có:

S^2 + S - 3P = 0

Sử dụng công thức Viết để tính nghiệm của phương trình bậc hai này, ta được:

S = (-1 + sqrt(1 + 12P))/2 hoặc S = (-1 - sqrt(1 + 12P))/2

Vì x và y là các số thực dương, nên ta chỉ quan tâm đến nghiệm dương của S, tức là:

S = (-1 + sqrt(1 + 12P))/2

Tiếp theo, ta có:

K = x^3 + y^3 + 3/(x^2 + y^2) + 2/((x+y)^2)

= S^3 - 3PS + 3/(S^2 - 2P) + 2/(S^2)

= S^3 - 3PS + 3S^2/(S^2 - 2P) + 2/(S^2)

= S^3 - 3PS + 3S^2/(S^2 - 2P) + 2S^2/(S^2 * (S^2 - 2P))

= S^3 - 3PS + (5S^4 - 6PS^2)/(S^2 * (S^2 - 2P))

= S^3 - 3PS + (5S^4 - 6PS^2)/(S^2 * (S^2 + 1 - 2xy))

= S^3 - 3PS + (5S^4 - 6PS^2)/((S^2 + 1)^2 - 2(S^2-1)P)

= S^3 - 3PS + (5S^4 - 6PS^2)/((S^2 + 1)^2 - 2(S^2-1)(S^3 - 3PS))

= S^3 - 3PS + (5S^4 - 6PS^2)/(-2S^5 + 10S^3 - 2PS^2 + 2P)

= S^3 - 3PS + (5S^4 - 6PS^2)/(2S^5 - 10S^3 + 2PS^2 - 2P)

= S^3 - 3PS + (5S^2 - 6P)/(2S^3 - 10S +