“-Xin chào Thượng sĩ, chúc Thượng sĩ một buổi sáng tốt lành – Ông Mác nói Thượng sĩ làm ơn cho biết: bây giờ là mấy giờ? – Có gì khó đâu – Thượng sĩ Clen-xi, người được coi là nhà Toán học của đồn cảnh sát, trả lời – Ông chỉ cần lấy 4 1 số giờ kể từ nữa đêm đến bây giờ cộng với 2 1 số giờ kể từ bây giờ đến nữa đêm sắp tới là ông sẽ biết chính xác bây giờ là mấy giờ.” (Trích trong bài toán của Sam Loyd là một chuyên gia phụ trách mục toán vui của nhiều tạp chí nổi tiếng của Mĩ). Vậy câu chuyện nói trên xảy ra lúc mấy giờ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hình bn tự vẽ nhé
a, xét tam giác AHB và tam giác ABC có:
góc AHB = góc ABC = 90 độ
góc ABH = góc BAC (ABCD là hình vuông)
nên tg AHB đồng dag vs tg ABC (g.g)
b, xét tg AHD và tg BAD có:
góc AHD = góc BAD = 90 độ
ADB là góc chung
nên tg AHD đồng dạng vs tg BAD. Do đó: AD/DB = DH/AD => AD^2 = DH.DB (dpcm)
c, tg ABD vuông tại A có: BD^2 = AB^2 + AD^2 => DB^2 = 4^2 + 3^2 = 25 => DB = 5 (cm)
Theo câu b ta có: AD^2 = DH,DB => DH = AD^2/DB =>DH = 3^2/5 = 1,8 (cm)
tg AHD vuông tại H có: AD^2 = AH^2 + DH^2
=> 3^2 = AH^2 + 1,8^2 => AH^2 = 5,76 => AH = căn 2 của 5,76
Áp dụng BĐT \(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\) và BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) ta có:
\(P=\left(2x+\frac{1}{x}\right)^2+\left(2y+\frac{1}{y}\right)^2\ge\frac{\left(2x+\frac{1}{x}+2y+\frac{1}{y}\right)^2}{2}=\frac{\left(2+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)
\(\ge\frac{\left(2+\frac{4}{x+y}\right)^2}{2}=\frac{\left(2+\frac{4}{1}\right)^2}{2}=\frac{6^2}{2}=18\)
Nên GTNN của P là 18 đạt được khi \(x=y=\frac{1}{2}\)
Ta có:\(\frac{5}{4}-A=\frac{5}{4}-\frac{10x}{\left(x+2\right)^2}=\frac{5\left(x+2\right)^2-40x}{4\left(x+2\right)^2}=\frac{5\left(x^2+4x+4\right)-40x}{4\left(x+2\right)^2}\)
=\(=\frac{5x^2+20x+20-40x}{4\left(x+2\right)^2}=\frac{5x^2-20x+20}{4\left(x+2\right)^2}=\frac{5\left(x^2-4x+4\right)}{4\left(x+2\right)^2}=\frac{5\left(x-2\right)^2}{4\left(x+2\right)^2}\ge0\)
\(\Rightarrow\frac{5}{4}-A\ge0\Rightarrow\frac{5}{4}\ge A\).Nên GTLN của A la \(\frac{5}{4}\) đạt được khi \(x=2\)
Đặt \(A=a_1^3+a^3_2+...+a^3_{2013}\)
vì \(2013⋮3\)nên \(2013^{2014}⋮3\)hay \(M=a_1+a_2+a_3+...+a_{2013}⋮3\)
Xét \(A-M=(a^3_1-a_1)+\left(a_2^{3_{ }}-a_2\right)+...+\left(a_{2013}^3-a_{2013}\right)\)
Dễ thấy \(a^3-a=a\left(a^2-1\right)=a\left(a-1\right)\left(a+1\right)\)là tích 3 số tự nhiên liên tiếp
do đó \(a^3-1⋮3\)
\(\Rightarrow A-M⋮3\). Mà \(M⋮3\)\(\Rightarrow A⋮3\left(dpcm\right)\)