tìm các giá trị của n để phương trình
\(2\left(x+n\right)\left(x+2\right)-3\left(x-1\right)\left(x^2+1\right)=15\)có nghiệm x=-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
*) \(2x+7=0\Rightarrow2x=-7\Rightarrow x=-\frac{7}{2}\)
Tập nghiệm p/t 1 là: \(S=\left\{-\frac{7}{2}\right\}\)
*) \(x^2-2x+11=x^2-4x+14\)
\(\Rightarrow x^2-4x+14-x^2+2x-11=0\)
\(\Rightarrow-2x+3=0\)
\(\Rightarrow-2x=-3\Rightarrow x=\frac{3}{2}\)
Tập nghiêm của p/t 2 là \(S=\left\{\frac{3}{2}\right\}\)
thấy: 2 pt có tập nghiệm khác nhau => 2 pt này ko tương đương nhau
p/s: ko rõ cách trình bày lắm -_- sai bỏ qua nha
\(\left|x^2+x+1\right|=3\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+x+1=3\\x^2+x+1=-3\end{cases}}\)
+) \(x^2+x+1=3\Rightarrow x^2+x+1-3=0\Rightarrow x^2+2x-x-2=0\Rightarrow\left(x+2\right).\left(x-1\right)=0\Rightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)
+) \(x^2+x+1=-3\Rightarrow x^2+x+4=0\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{15}{4}=0\left(loai\right)\)
tập nghiệm pt 1 là \(S=\left\{1;-2\right\}\)
\(\left|x\right|=1\Rightarrow\orbr{\begin{cases}x=-1\\x=1\end{cases}}\)
tập nghiệm pt 2 là \(S=\left\{1;-1\right\}\)
Thấy: 2 pt có tập nghiệm khác nhau => 2 pt này không tương đương
Nháp trước :
\(A=\frac{x^2+1}{x^2-x+1}\)
\(\Leftrightarrow Ax^2-Ax+A=x^2+1\)
\(\Leftrightarrow x^2\left(A-1\right)-Ax+A-1=0\)
*Khi A = 1 thì x = 0
*Khi A khác 1
Pt có nghiệm khi \(\Delta\ge0\Leftrightarrow A^2-4\left(A-1\right)^2\ge0\)
\(\Leftrightarrow A^2-4\left(A^2-2A+1\right)\ge0\)
\(\Leftrightarrow A^2-4A^2+8A-1\ge0\)
\(\Leftrightarrow-3A^2+8A-1\ge0\)
\(\Leftrightarrow\frac{4-\sqrt{13}}{3}\le A\le\frac{4+\sqrt{13}}{3}\)
Nên \(A_{min}=\frac{4-\sqrt{13}}{3}\) Số khá xấu nên nếu làm theo cách lớp 8 thì cũng mệt đấy !
Nếu muốn thì hãy phân tích cái A ra :) Biết đáp án trước rồi thì có hướng -> dễ
+)\(\left(x-1\right)^2+2=\left(x-2\right)^2\)
\(\Leftrightarrow\left(x-2\right)^2-\left(x-1\right)^2=2\)
\(\Leftrightarrow\left(x-2-x+1\right)\left(x-2+x-1\right)=2\)
\(\Leftrightarrow-1\left(2x-3\right)=2\)
\(\Leftrightarrow2x-3=-2\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy tập nghiệm của pt 1 là \(S=\left\{\frac{1}{2}\right\}\)
+)\(2x^3-x^2+2x-1=0\)
\(\Leftrightarrow x^2\left(2x-1\right)+\left(2x-1\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x-1=0\\x^2+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x^2=-1\left(\text{loại}\right)\end{cases}}}\)
Vậy tập nghiệm của pt 2 là \(S=\left\{\frac{1}{2}\right\}\)
Xét thấy 2 pt có tập nghiệm như nhau nên 2 pt này tương đương
*\(\left(x-1\right)^2+2=\left(x-2\right)^2\)
\(\Leftrightarrow x^2-2x+1+2=x^2-4x+4\)
\(\Leftrightarrow x^2-x^2-2x+4x=-1-2+4\)
\(\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)
Vậy phương trình có tập nghiệm S= { 1/2 } (1)
*\(2x^3-x^2+2x-1=0\)
\(\Leftrightarrow x^2\left(2x-1\right)+\left(2x-1\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow2x-1=0\) ( vì x2 + 1 luôn khác 0 với mọi x )
\(\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)
Vậy phương trình có tập nghiệm là S = {1/2} (2)
Từ (1) và (2) suy ra : 2 phương trình đã cho tương đương nhau
Dùng BĐT quen thuộc: \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) nhé! Một dòng là đủ.
\(\frac{1}{\left(4a^2+4b^2\right)}+\frac{1}{8ab}\ge\frac{4}{4a^2+8ab+4b^2}==\frac{4}{4\left(a^2+2ab+a^2\right)}=\frac{1}{\left(a+b\right)^2}^{\left(đpcm\right)}\)
\(2x^3-2x+x^2-1=4x^2-2x-2\)
\(2x^3-2x+x^2-1-4x^2+2x+2=0\)
\(2x^3-3x^2+1=0\)
\(2x^3-2x^2-x^2+1=0\)
\(2x^2.\left(x-1\right)-\left(x^2-1\right)=0\)
\(2x^2.\left(x-1\right)-\left(x-1\right).\left(x+1\right)=0\)
\(\left(x-1\right).\left(2x^2-x-1\right)=0\)
*) \(x-1=0\Rightarrow x=1\)
*)\(2x^2-x-1=0\Rightarrow2x^2-2x+x-1=0\Rightarrow2x.\left(x-1\right)+\left(x-1\right)=0\)
\(\Rightarrow\left(x-1\right).\left(2x+1\right)=0\Rightarrow\orbr{\begin{cases}x=1\\x=-\frac{1}{2}\end{cases}}\)
Vậy ...
Thay nghiệm x = -1 ta được:
2.(-1 + n).(-1 + 2) - 3.(-1 - 1).[(-1)2 + 1) = 15
<=> -2 + 2n + 12 = 15
<=> 2n = 15 - 12 + 2
<=> 2n = 5
<=> n = 5/2
Vậy n = 5/2 thì phương trình trên có nghiệm là x = -1
#Đức Lộc#