a) (a+b)^3 + (a-b)^3
b) 9x^2+6xy+y^2
c) 4x^2-25
đề bài là phân tích đa thức thành nhân tử ai nhanh mình tick nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x^2+2y^2+z^2+2xy+2xz+2yz+10x+6y+34=0\)
\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2zx\right)+\left(x^2+10x+25\right)+\left(y^2+6y+9\right)=0\)
\(\Leftrightarrow\left(x+y+z\right)^2+\left(x+5\right)^2+\left(y+3\right)^2=0\)
Vì \(\hept{\begin{cases}\left(x+y+z\right)^2\ge0\\\left(x+5\right)^2\ge0\\\left(y+3\right)^2\ge0\end{cases}}\)\(\Rightarrow\left(x+y+z\right)^2+\left(x+5\right)^2+\left(y+3\right)^2\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x+y+z\right)^2=0\\\left(x+5\right)^2=0\\\left(y+3\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y+z=0\\x+5=0\\y+3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x+y+z=0\\x=-5\\y=-3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-5\\y=-3\\z=8\end{cases}}}\)
A = \(\frac{x}{x-1}+\frac{x}{x+1}+\frac{2-x^2}{1-x^2}\)
= \(\frac{x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\)+ \(\frac{x\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}\)\(+\frac{x^2-2}{x^2-1}\)
= \(\frac{x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{x\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}\)\(+\frac{x^2-2}{\left(x-1\right)\left(x+1\right)}\)
= \(\frac{x\left(x+1\right)+x\left(x-1\right)+x^2-2}{\left(x-1\right)\left(x+1\right)}\)
=\(\frac{x^2+x+x^2-x+x^2-2}{\left(x-1\right)\left(x+1\right)}\)
=\(\frac{3x^2-2}{\left(x-1\right)\left(x+1\right)}\)
cậu xem lại đề nha
Đã bao giờ có 2 đường trung tuyến vuông góc bao giờ chưa?????
\(\frac{1}{\left(a+1\right)^2}+\frac{1}{\left(b+1\right)^2}\ge\frac{1}{ab+1}\)
\(\Leftrightarrow ab^3-a^2b^2+a^3b-2ab+1\ge0\)
\(\Leftrightarrow ab\left(a-b\right)^2+\left(ab-1\right)^2\ge0\)đúng
\(a,\left(a+b\right)^3+\left(a-b\right)^3\)
\(=\left(a+b+a-b\right)[\left(a+b\right)^2-\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2]\)
\(=2a\left(a^2+2ab+b^2-a^2+b^2+a^2-2ab+b^2\right)\)
\(=2a\left(a^2+3b^2\right)\)
\(b,9x^2+6xy+y^2\)
\(=\left(3x\right)^2+2.3x.y+y^2\)
\(=\left(3x+y\right)^2\)
\(c,4x^2-25\)
\(=\left(2x\right)^2-5^2\)
\(=\left(2x-5\right)\left(2x+5\right)\)