Biết mỗi chữ cái dưới đây biểu diễn một chữ số khác nhau, hỏi số có 4 chữ số MATH có thể nhận bao nhiêu giá trị khác nhau?
MATH
+
TEACH
90 89 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n là số tự nhiên không chia hết cho 3
=> \(\left[{}\begin{matrix}n=3k+1\\n=3k+2\end{matrix}\right.\)
+) n=3k+1
\(n^2+2=\left(3k+1\right)^2+2=9k^2+6k+3⋮3\)
+) n=3k+2
\(n^2+2=\left(3k+2\right)^2+2=9k^2+6k+6⋮3\)
=> Với mọi số tự nhiên n không chia hết cho 3 thì n2 +2 chia hết cho 3
\(4\left(2x+1\right)^2=576\)
\(\left(2x+1\right)^2=\dfrac{576}{4}=144=12^2\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=12\\2x+1=-12\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=11\\2x=-13\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{11}{2}\\x=-\dfrac{13}{2}\end{matrix}\right.\)
\(4\cdot(2x+1)^2=576\\\Rightarrow (2x+1)^2=576:4\\\Rightarrow(2x+1)^2=144\\\Rightarrow(2x+1)^2=(\pm12)^2\)
\(\Rightarrow\left[{}\begin{matrix}2x+1=12\\2x+1=-12\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=11\\2x=-13\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{11}{2}\\x=-\dfrac{13}{2}\end{matrix}\right.\)
Vậy: \(x\in\left\{-\dfrac{13}{2};\dfrac{11}{2}\right\}\)
\((4+x)\cdot27=243\\\Rightarrow4+x=243:27\\\Rightarrow4+x=9\\\Rightarrow x=9-4\\\Rightarrow x=5\\Vậy:x=5\)
Lời giải:
Gọi số cần tìm là $\overline{ab}$. Ta có:
$\overline{ab2}=405+\overline{ab}$
$\overline{ab}\times 10+2=405+\overline{ab}$
$\overline{ab}\times 10-\overline{ab}=405-2$
$\overline{ab}\times 9=403$
$\overline{ab}=403:9$ không phải số tự nhiên.
Đề có vẻ sai. Bạn xem lại.
8.4.34.125.25=(8.125).(25.4).34=1000.100.34=100000.34=3400000
a/
Ta có
DC=AD+BC (gt)
CI=BC (gt)
=> DC=AD+CI
Ta có
DC=DI+CI
=> AD=DI => tg ADI cân tại D \(\Rightarrow\widehat{DAI}=\widehat{DIA}\)
Mà \(\widehat{DAI}=\widehat{BAI}\)
\(\Rightarrow\widehat{DIA}=\widehat{BAI}\) Mà 2 góc này ở vị trí so le trong
=> AB//CD => ABCD là hình thang
b/
Ta có
CI=BC (gt) => tg BCI cân tại C \(\Rightarrow\widehat{CBI}=\widehat{CIB}\)
Ta có
AB//CD \(\Rightarrow\widehat{ABI}=\widehat{CIB}\) (góc so le trong)
\(\Rightarrow\widehat{CBI}=\widehat{ABI}\) => BI là phân giác của góc B
vì ở hàng chục nghìn có 0+T = 9 => T chỉ có thể = 9;8
xét H=4:
T=8;9
C=1;0
A=4;9
vì H nhận gt 4 => A=9
*tương tự có T=8,C=1,A=9
=> M+E = 9
mà các giá trị 1;4;8;9 đã được nhận
=> M=3;E=7 và ngược lại; M=2;E=7 và ngược lại
MATH có 4 trường hợp (1)
xét H=9:
T+C chỉ có thể bằng 8 =>
T=8;9
C=1;0
mà H đã nhận gt 9 => T=8;C=1
A=4;9
*tương tự
=>A=4
vì M != E => M+E = 10 và M+E !=0
mà các gt 1;4;8;9 đã được nhận
=>M=3;E=7 và ngược lại
MATH có 2 trường hợp (2)
Từ (1) và (2) ta có:
MATH có 4+2=6 trường hợp