Chứng minh rằng:
Nếu x2+y2+z2=xy+yz+zx thì x=y=z
Giúp mình nha. Thank you so much
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(3x+2\right)\left(x-1\right)-3\left(x+1\right)\left(x-2\right)=4\)
\(\Rightarrow\left(3x+3-1\right)\left(x-1\right)-3\left(x+1\right)\left(x-1-1\right)=4\)
\(\Rightarrow\left(3x+3\right)\left(x-1\right)-\left(x-1\right)-3\left(x+1\right)\left(x-1\right)+3\left(x+1\right)=4\)
\(=3\left(x+1\right)\left(x-1\right)-3\left(x+1\right)\left(x-1\right)+3x+3-x+1=4\)
\(\Rightarrow2x+4=4\Rightarrow2x=0\Rightarrow x=0\)
\(\left(3x+2\right).\left(x-1\right)-3.\left(x+1\right).\left(x-2\right)=4\Leftrightarrow3x^2-x-2-3.\left(x^2-x-2\right)-4=0\)
\(\Leftrightarrow3x^2-x-2-3x^2+3x+6-4=0\Leftrightarrow2x=0\Leftrightarrow x=0\)
\(x^2-x+\frac{1}{4}=\left[x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]=\left(x-\frac{1}{2}\right)^2\) ( mình nghĩ phải là \(\frac{1}{4}\) chứ bạn )
\(4x^2-4x+1=\left[\left(2x\right)^2-2.2x.1+1^2\right]=\left(2x-1\right)^2\)
Chúc bạn học tốt ~
\(\frac{x-5}{x-1}+\frac{2}{x-3}=1\)(ĐKXĐ: x khác 1;3)
\(\Leftrightarrow\frac{\left(x-5\right)\left(x-3\right)}{\left(x-1\right)\left(x-3\right)}+\frac{2\left(x-1\right)}{\left(x-1\right)\left(x-3\right)}=1\)
\(\Leftrightarrow\frac{x^2-8x+15+2x-2}{x^2-4x+3}=1\)
\(\Leftrightarrow\frac{x^2-6x+13}{x^2-4x+3}=1\)\(\Rightarrow x^2-4x+3=x^2-6x+13\)
\(\Leftrightarrow x^2-4x+3-x^2+6x-13=0\)
\(\Leftrightarrow2x-10=0\Leftrightarrow2x=10\Leftrightarrow x=5\)(t/m ĐKXĐ)
Vậy nghiệm của pt là x=5.
ĐKXĐ: x khác 1, 3
\(\frac{x-5}{x-1}+\frac{2}{x-3}-1=0\Leftrightarrow\frac{\left(x-5\right).\left(x-3\right)}{\left(x-1\right).\left(x-3\right)}+\frac{2\left(x-1\right)}{\left(x-1\right).\left(x-3\right)}-\frac{\left(x-1\right).\left(x-3\right)}{\left(x-1\right).\left(x-3\right)}=0\\ \)
\(\Leftrightarrow\frac{\left(x^2-8x+15\right)+\left(2x-2\right)-\left(x^2-4x+3\right)}{\left(x-1\right).\left(x-3\right)}=0\)
\(\Leftrightarrow\left(x^2-8x+15\right)+2x-2-\left(x^2-4x+3\right)=0\)
\(\Leftrightarrow x^2-8x+15+2x-2-x^2+4x-3=0\)
\(\Leftrightarrow-2x+10=0\Leftrightarrow x=5\)
\(y+2⋮x;x+2⋮y\Rightarrow\left(x+2\right)\left(y+2\right)⋮xy\Rightarrow xy+2x+2y+4⋮xy\Rightarrow2x+2y+4⋮xy\)
\(\Rightarrow2\left(x+y+2\right)⋮xy\Rightarrow2⋮xy\Rightarrow xy\inƯ\left(2\right)=1;2\)
\(xy=1\Rightarrow x=1,y=1\Rightarrow y+2=1+2=3⋮x=1\Rightarrow y+2⋮x\)
\(x+2=1+2=3⋮y=1\Rightarrow x+2⋮y\)
\(\Rightarrow x=1,y=1\left(tm\right)\)
\(xy=2\Rightarrow x=1,y=2;x=2,y=1\Rightarrow x+2=1+2=3\)ko chia hết cho \(y=2\Rightarrow x+2\)ko chia hết cho y
\(\Rightarrow x=1,y=2\left(ktm\right)\Rightarrow x=2,y=1\left(ktm\right)\)
vậy x=1,y=1
\(M=\frac{20}{x^2+y^2}+\frac{11}{xy}=\frac{20}{x^2+y^2}+\frac{22}{2xy}=\frac{20}{x^2+y^2}+\frac{20}{2xy}+\frac{2}{2xy}\)
\(=20\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{1}{xy}>=20\cdot\frac{4}{x^2+2xy+y^2}+\frac{4}{\left(x+y\right)^2}\)
\(=\frac{80}{\left(x+y\right)^2}+\frac{4}{\left(x+y\right)^2}=\frac{84}{\left(x+y\right)^2}>=\frac{84}{2^2}=\frac{84}{4}=21\)
dấu = xảy ra khi \(\hept{\begin{cases}x+y=2\\x=y\end{cases}\Rightarrow x=y=1}\)
vậy min M là 21 khi x=y=1
x2+y2+z2=xy+yz+zx
<=>2(x2+y2+z2)=2(xy+yz+zx)
<=>2x2+2y2+2z2=2xy+2yz+2zx
<=>2x2+2y2+2z2-2xy-2yz-2zx=0
<=>(x2-2xy+y2)+(y2-2yz+z2)+(z2-2zx+x2)=0
<=>(x-y)2+(y-z)2+(z-x)2=0
Vì \(\hept{\begin{cases}\left(x-y\right)^2\ge0\\\left(y-z\right)^2\ge0\\\left(z-x\right)^2\ge0\end{cases}\Rightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0}\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x-y=0\\y-z=0\\z-x=0\end{cases}\Leftrightarrow x=y=z}\)(đpcm)