Cho các số thực DƯƠNG a, b, c thoả mãn \(a+b+c=abc\). Chứng minh rằng: \(ab+bc+ca\ge3+\sqrt{a^2+1}+\sqrt{b^2+1}+\sqrt{c^2+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+\frac{1}{x^2}+y^2+\frac{1}{y^2}=4\)
\(\Rightarrow\left(x-2+\frac{1}{x^2}\right)+\left(y^2-2+\frac{1}{y^2}\right)=0\)
\(\Rightarrow\left(x-\frac{1}{x}\right)^2+\left(y-\frac{1}{y}\right)^2=0\)
\(\Leftrightarrow\left(x-\frac{1}{x}\right)^2=\left(y-\frac{1}{y}\right)^2=0\)
\(\Leftrightarrow x=y=1=-1\)
Forever Miss You : có cách này nhanh hơn =))
Áp dụng BĐT AM-GM ta có:
\(x^2+\frac{1}{x^2}+y^2+\frac{1}{y^2}\ge2.\sqrt{\frac{x^2.1}{x^2}}+2.\sqrt{\frac{y^2.1}{y^2}}=2+2=4\)
Mà \(x^2+\frac{1}{x^2}+y^2+\frac{1}{y^2}=4\)
\(\Rightarrow\hept{\begin{cases}x^2=\frac{1}{x^2}\\y^2=\frac{1}{y^2}\end{cases}}\Leftrightarrow\hept{\begin{cases}x^4=1\\y^4=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\pm1\\y=\pm1\end{cases}}\)
Vậy \(\hept{\begin{cases}x=\pm1\\y=\pm1\end{cases}}\)
híc dài quá mình xin phép tách ra cho đỡ mỏi nhé @@
PASSIVE VOICE ( Câu bị động )
I. Chuyển các câu sau đây thành câu bị động:
1. The gardener has planted some trees.
-> Some trees have been planted by the gardener.
2. Doctor Brown will give you some advice.
-> You will be given some advice bt Doctor Brown.
3.A famous designer will redecorate the hotel.
-> The hotel will be redecorated by a famous designer
4. Someone has broken the crystal vase.
-> The crystal vase has been broken.
5. His parents have brought him up to be polite.
-> He has been brought up to be polite by his parents.
6. Fleming discovered penicillin.
-> Penicillin was discovered by Fleming.
7. They will advertise the product on television.
-> The product will be advertised on television.
8. Someone is remaking that film.
-> That film is being remade.
9. Picasso painted that picture.
-> That picture was painted by Picasso.
10. Did the idea interest you?
-> Were you interested in the idea?
11. You must leave the bathroom tidy.
-> The bathroom must be left tidy.
12. You should water this plant daily.
-> This plant should be watered daily.
13. Our neighbor ought to paint the garage.
-> The garage ought to be painted by our neighbor.
14. I have to return these books to the library.
-> These books have to be returned to the library.
15. People know him well.
-> He is known well.
16. You must dry-clean this shirt.
-> This shirt must be dry-cleaned.
17. Someone will pay you in ten days.
-> You will be paid in ten days.
18. You can improve your health with more exercise.
-> Your health can be improved with more exercise.
19. People must obey the law.
-> The law must be obeyed.
20.The cleaner is going to clean the kitchen floor.
-> The kitchen floor is going to be cleaned by the cleaner.
\(\left(2x-3\right)^2=\left(2x-3\right)\left(x-1\right)\)
\(\left(2x-3\right)^2-\left(2x-3\right)\left(x-1\right)=0\)
\(\left(2x-3\right)\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-3=0\\x-2=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=1,5\\x=2\end{cases}}\)
Vay \(x\in\left\{1,5;2\right\}\)
\(\left(2x-3\right)^2=\left(2x-3\right)\left(x-1\right)\)
\(\Leftrightarrow4x^2-9-2x^2+3x-3=0\)
\(\Leftrightarrow2x^2+3x-12=0\)
\(\Leftrightarrow2x^2+3x=12\)
Từ đây bạn làm nốt nhé
Nếu sai thì thông cảm cho mình nha
BĐT Bunhiacopxki:
Áp dụng cho 6 số(1,1,1,a,b,c)
\(\left(1^2+1^2+1^2\right).\left(a^2+b^2+c^2\right)\ge\left(1a+1b+1c\right)^2\)
Chứng minh:
\(\left(ax+by\right)^2\le\left(a^2+b^2\right).\left(x^2+y^2\right)\)
\(\Leftrightarrow a^2x^2+2axby+b^2y^2\le a^2x^2+a^2y^2+b^2x^2+b^2y^2\)
\(\Leftrightarrow2axby\le a^2y^2+b^2x^2\)
\(\Leftrightarrow\left(ay-bx\right)^2\ge0\)( đpcm )
Dự đoán đẳng thức xảy ra tại \(a=b=c=\sqrt{3}\)
Ta có: \(\sqrt{a^2+1}=\sqrt{\frac{1}{4}}.\sqrt{4\left(a^2+1\right)}\le\sqrt{\frac{1}{4}}\left(\frac{4+a^2+1}{2}\right)=\frac{5+a^2}{4}\)
Thiết lập hai bđt còn lại tương tự và cộng theo vế:
\(VP\le3+\frac{1}{2}\left(\frac{15+a^2+b^2+c^2}{2}\right)\)\(=\frac{27+a^2+b^2+c^2}{4}\)
Ta chỉ cần chứng minh: \(ab+bc+ca\ge\frac{27}{4}+\frac{a^2+b^2+c^2}{4}\)
Đến đây chưa nghĩ ra =((
Lạy trời cho con đừng gặp ngõ cụt như nãy nx,làm mà cứ ngõ cụt chán ~v
Lời giải:
\(a+b+c=abc\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\) (do a,b,c dương nên a + b + c > 0 tức là abc > 0)
Lại có: \(1=\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\ge\frac{9}{ab+bc+ca}\Rightarrow VT=ab+bc+ca\ge9\) (1)
Ta sẽ c/m \(VP=3+\sqrt{a^2+1}+\sqrt{b^2+1}+\sqrt{c^2+1}\le9\)
\(\Leftrightarrow A=\sqrt{a^2+1}+\sqrt{b^2+1}+\sqrt{c^2+1}\le6\)
Thật vậy: \(A=\frac{1}{2}\left[\sqrt{4\left(a^2+1\right)}+\sqrt{4\left(b^2+1\right)}+\sqrt{4\left(c^2+1\right)}\right]\)
\(\le\frac{1}{2}\left(\frac{15+a^2+b^2+c^2}{2}\right)=\frac{15+a^2+b^2+c^2}{4}\)
Lại gặp ngõ cụt nữa r,=((Ai đó giúp em vs!!!