Ngta làm 1 lối đi theo chiều dài và chiều rộng của 1 sân cỏ HCN. Em hãy tính chiều rộng x của lối đi . Biết rằng lối đi có S=46 m vuông . sân cỏ có chiều dài 15m
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\frac{1-\sqrt{a}}{1-a}\right)^2=1\)
Biến đổi vế trái ta có:
\(=\left[\frac{1-\sqrt{a^3}}{1-\sqrt{a}}+\sqrt{a}\right]\left[\frac{1-\sqrt{a}}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\right]^2\)
\(=\left[\frac{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)}{1-\sqrt{a}}+\sqrt{a}\right]\left[\frac{1}{1+\sqrt{a}}\right]^2\)
\(=\left(1+\sqrt{a}+a+\sqrt{a}\right)\left(\frac{1}{a+2\sqrt{a}+1}\right)\)
\(=\frac{\left(a+2\sqrt{a}+1\right)}{a+2\sqrt{a}+1}\)
\(=1=VP\)
Vậy đẳng thức được chứng minh
\(BDT\Leftrightarrow\left(a+b+c\right)\left(\frac{a}{\left(b+c\right)^2}+\frac{b}{\left(a+c\right)^2}+\frac{c}{\left(a+b\right)^2}\right)\ge\frac{9}{4}\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\left(a+b+c\right)\left(\frac{a}{\left(b+c\right)^2}+\frac{b}{\left(a+c\right)^2}+\frac{c}{\left(a+b\right)^2}\right)\ge\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)^2\)
Theo BĐT Nesbitt thì : \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)
\(\Rightarrow\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)^2\ge\frac{9}{4}\)
Không mất tính tổng quát, chuẩn hóa a + b + c = 3 \(\Rightarrow0< a,b,c< 3\)
Khi đó bất đẳng thức tương đương với: \(\frac{a}{\left(3-a\right)^2}+\frac{b}{\left(3-b\right)^2}+\frac{c}{\left(3-c\right)^2}\ge\frac{3}{4}\)
Xét BĐT phụ: \(\frac{x}{\left(3-x\right)^2}\ge\frac{2x-1}{4}\)với \(x\in\left(0;3\right)\)
Thật vậy: (*)\(\Leftrightarrow\frac{\left(x-1\right)^2\left(-2x+9\right)}{4\left(3-x\right)^2}\ge0\)(đúng với mọi \(x\in\left(0;3\right)\))
Áp dụng, ta được: \(\frac{a}{\left(3-a\right)^2}+\frac{b}{\left(3-b\right)^2}+\frac{c}{\left(3-c\right)^2}\ge\frac{2a-1}{4}+\frac{2b-1}{4}+\frac{2c-1}{4}\)
\(=\frac{2\left(a+b+c\right)-3}{4}=\frac{3}{4}\left(q.e.d\right)\)
Đẳng thức xảy ra khi a = b = c
đặt \(\hept{\begin{cases}a+b=x\\b+c=y\\c+a=z\end{cases}}\)
cậu tính A theo x,y,x rồi chứng minh
\(B=\frac{x}{z-y}.\frac{y}{x-z}+\frac{y}{x-z}.\frac{z}{y-x}+\frac{z}{y-x}.\frac{x}{z-y}=-1\)
thì ta có A+2B>=0 -->A>=-2B=2
\(\frac{\left(a+b\right)^2}{a-b}+\frac{\left(b+c\right)^2}{\left(b-c\right)}+\frac{\left(c+a\right)^2}{\left(c-a\right)}\ge2\)
Subtract 2 from both sides:
\(\frac{\left(a+b\right)^2}{a-b}+\frac{\left(b+c\right)^2}{b-c}+\frac{\left(c+a\right)^2}{c-a}-2\ge2-2\)
Refine:
\(\frac{\left(a+b\right)^2}{a-b}+\frac{\left(b+c\right)^2}{b-c}+\frac{\left(c+a\right)^2}{c-a}\ge0\)
Simplyfy : \(\frac{\left(a+b\right)^2}{\left(a-b\right)}+\frac{\left(b+c\right)^2}{b-c}+\frac{\left(c+a\right)^2}{c-a}:\) \(\frac{4a^2bc-4a^2c^2-4a^2b^2+2a^2b-2a^2c+4ab^2c+4abc^2+2ac^2-2ab^2-4b^2c^2+2b^2c-2bc^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(\frac{\left(a+b\right)^2}{\left(a-b\right)}+\frac{\left(b+c\right)^2}{\left(b-c\right)}+\frac{\left(c+a\right)^2}{\left(c-a\right)}-2\)
Convert element to fraction: \(2=\frac{2}{1}\)
\(=\frac{\left(a+b\right)^2}{\left(a-b\right)}+\frac{\left(b+c\right)^2}{\left(b-c\right)}+\frac{\left(c+a^2\right)}{\left(c-a\right)}-\frac{2}{1}\)
Find LCD for: \(\frac{\left(a+b\right)^2}{\left(a-b\right)}+\frac{\left(b+c\right)^2}{\left(b-c\right)}+\frac{\left(c+a\right)^2}{c-a}-\frac{2}{1}\):
Find the least common denominator 1 (a - b) (b - c) (c- a) = (a - b) (b - c) (c- a)(a - b) (b - c) (c- a)
Sau đó vào đây để xem bài giải tiếp theo nhá! Lười đánh máy tiếp lắm! Có gì mai mốt sử dụng phần mềm đó giải khỏi phải lên đây hỏi.
Step-by-Step Calculator - Symbolab
Gọi tuổi mẹ là x, tuổi con là y
=> x-4=5(y-4) <=> x-4=5y-20 <=> x=5y-16
Và: x+2=3(y+2) <=> x+2=3y+6 <=> x=3y+4
=> 5y-16=3y+4
<=> 2y=20 => y=10
x=3.10+4=34
ĐS: Tuổi mẹ là 34 (tuổi). Tuổi con là 10 (tuổi)
Gọi tuổi mẹ là x, tuổi con là y
Ta có : x - 4 = 5y (1)
x + 2 = 3y => 2 . (x + 2) = 2 . 3y
=> 2x + 4 = 6y (2)
Lấy (2) - (1) ta có : 2x + 4 - x + 4 = 6y - 5y
=> x + 8 = y
Thay vào (1) ta có : x - 4 = 5 . ( x + 8 )
=> x - 4 = 5x + 40
=> 5x - x = - 4 - 40
=> 4x = - 44
=> x = (-44) : 4 = -11
=> y = -11 + 8 = - 3
Vậy x = -11 , y = -3
GTNN :\(A=\frac{\left(2x^2+2\right)+\left(x^2-2x+1\right)}{x^2+1}=2+\frac{\left(x-1\right)^2}{x^2+1}\ge2\forall x\) có GTNN là 2
GTLN : \(A=\frac{\left(4x^2+4\right)-\left(x^2+2x+1\right)}{x^2+1}=4-\frac{\left(x+1\right)^2}{x^2+1}\le4\forall x\) có GTLN là 4