K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2018

\(\left(x^2-x+2\right)^2+\left(x-2\right)^2\)

\(=\left[\left(x^2-x+2\right)+\left(x-2\right)\right].\left[\left(x^2-x+2\right)-\left(x-2\right)\right]\)

\(=\left(x^2-x+2+x-2\right).\left(x^2-x+2-x+2\right)\)

29 tháng 6 2018

Ta có BT =\(x^4-2x^3+6x^2-8x+8=x^4+4x^2-2x^3-8x+2x^2+8=x^2\left(x^2+4\right)-2x\left(x^2+4\right)+2\left(x^2+4\right)\)

=\(\left(x^2+4\right)\left(x^2-2x+2\right)\)

29 tháng 6 2018

BÀI 1:

a) \(x^4+2x^2y+y^2=\left(x^2+y\right)^2\)

b) \(\left(2a+b\right)^2-\left(2b+a\right)^2=\left(2a+b+2b+a\right)\left(2a+b-2b-a\right)\)

\(=\left(3a+3b\right)\left(a-b\right)=3\left(a+b\right)\left(a-b\right)\)

c) \(\left(a^3-b^3\right)+\left(a-b\right)^2=\left(a-b\right)\left(a^2+ab+b^2\right)+\left(a-b\right)^2\)

\(=\left(a-b\right)\left[a^2+ab+b^2+\left(a-b\right)\right]=\left(a-b\right)\left(a^2+ab+b^2+a-b\right)\)

d) \(\left(x^2+1\right)^2-4x^2=\left(x^2+1-2x\right)\left(x^2+1+2x\right)=\left(x-1\right)^2\left(x+1\right)^2\)

e) \(\left(y^3+8\right)+\left(y^2-4\right)=\left(y+2\right)\left(y^2-y+2\right)\)

f) \(1-\left(x^2-2xy+y^2\right)=1-\left(x-y\right)^2=\left(1-x+y\right)\left(1+x-y\right)\)

g) \(x^4-1=\left(x-1\right)\left(x+1\right)\left(x^2+1\right)\)

h) ktra lại đề

m) \(\left(x-a\right)^4-\left(x+a\right)^4=-8ax\left(a^2+x^2\right)\)

29 tháng 6 2018

a ) x^4 + 2x^2y + y^2 

   Dùng hằng đẳng thức ( a + b )^2 = a^2 +2ab + b^2

   = ( x^2 + y )^2

b ) ( 2a + b )^2 - ( 2b + a )^2

   = ( 4a^2 + 4ab + b^2 ) - ( 4b^2 + 4ab + a^2 )

   = 4a^2 + 4ab + b^2 - 4b^2 - 4ab - a^2

   = 3a^2- 3b^2

   = 3( a^2 - b^2 ) 

29 tháng 6 2018

à thiếu rồi, vẽ DH vuông góc với BC nữa nha mọi người

29 tháng 6 2018

1)  \(4x^2-y^2=\left(2x-y\right)\left(2x+y\right)\)

2) \(8x^3-27=\left(2x-3\right)\left(4x^2+6x+9\right)\)

3) \(x^3+27y^3=\left(x+3y\right)\left(x^2-3xy+9y^2\right)\)

4) \(x^2-25y^2=\left(x-5y\right)\left(x+5y\right)\)

5) \(8x^3+\frac{1}{27}=\left(2x+\frac{1}{3}\right)\left(4x^2-\frac{2}{3}x+\frac{1}{9}\right)\)

29 tháng 6 2018

mk chỉnh lại đề câu a) , nếu ko đúng bỏ qua nha:

a)  \(4x^2-xy+\frac{1}{16}y^2=\left(2x-\frac{1}{4}y\right)^2\)

b)  \(\left(4x^2-4x+1\right)+4y\left(1-2x\right)+4y^2\)

\(=\left(1-2x\right)^2+2.2y\left(1-2x\right)+4y^2\)

\(=\left(1-2x+4y\right)^2\)

\(\left(3+xy^2\right)^2=9+6xy^2+x^2y^4\)

29 tháng 6 2018

hẳng đằng thức số 1 bạn ạ 

29 tháng 6 2018

Ta có \(a^2\le1,b^2\le1;c^2\le1\Rightarrow a^3\le a^2;b^3\le b^2;c^3\le c^2\)

=> \(a^2+b^2+c^2\ge a^3+b^3+c^3\)

Dấu = xảy ra <=> 1 số =1 và 2 số =0 => S=1 

p/s : đề phải là a^2 +b^2012+c^2013 nhá !

^_^

29 tháng 6 2018

Ta có a^2+b^2+c^2=1 suy ra a,b,c <=1

xét a^2+b^2+c^2-a^3-b^3-c^3=1-1 suy ra a^2(1-a)+b^2(1-b)+c^2(1-c)=0

vì a,b,c<=1 suy ra 1-a>=0;1-b>=0;1-c>=0

suy ra a^2(1-a)>=0;b^2(1-b)>=0;c^2(1-c)>=0 suy ra a^2(1-a)+b^2(1-b)+c^2(1-c)>=0

mà a^2(1-a)+b^2(1-b)+c^2(1-c)=0 suy ra a^2(1-a)=0 ;b^2(1-b)=0; c^2(1-c)=0

suy ra a=0 hoặc a=1 ; b=0 hoặc b=1 ; c=0 hoặc c=1 suy ra S=1

29 tháng 6 2018

\(x^5+x^4-4x^3+x^2-x-2=\left(x^2-x-1\right)\left(x^3+2x^2-x+2\right)\)

Phân tích đa thức thành nhân tử " tự nhân vào là ra "

\(\left(x^2-x-1\right)=0\)

\(x^3+2x^2-x+2=0\)

\(\left(x^2-x-1\right)\hept{\begin{cases}\Delta=5\\x=\frac{1+\sqrt{5}}{2}\\x=\frac{1-\sqrt{5}}{2}\end{cases}}\)

ta có

\(\frac{1}{2}+\frac{\sqrt{5}}{2}+\frac{1}{2}-\frac{\sqrt{5}}{2}=1\)

thỏa mãn a+b=1      " bài có 3 nghiệm , x3 = -1 ko thỏa mãn a+b=1) vậy chỉ lấy 2 nghiệm thôi "

\(ab=\left(\frac{1}{2}+\frac{\sqrt{5}}{2}\right)+\left(\frac{1}{2}-\frac{\sqrt{5}}{2}\right)=\frac{1}{4}-\frac{25}{4}=\frac{-24}{4}=-6\)

29 tháng 6 2018

\(1,=\left(x+1\right)\left(x^2+2x\right)=\left(x+1\right)x\left(x+2\right)\)

\(2,=x\left(2x-3\right)+2\left(2x-3\right)=\left(2x-3\right)\left(x+2\right)\)

\(3,=3x\left(x-1\right)-\left(x-1\right)=\left(x-1\right)\left(3x-1\right)\)

\(4,=2x\left(x-y\right)-6\left(x-y\right)=\left(x-y\right)\left(2x-6\right)=\left(x-y\right)2\left(x-3\right)\)

\(5,=4x\left(x+3\right)\)