K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2019

a) chưa học :v

b) \(\frac{x-1}{x-3}>2\)ĐKXĐ : \(x\ne3\)

\(\Leftrightarrow x-1>2\left(x-3\right)\)

\(\Leftrightarrow x-1>2x-6\)

\(\Leftrightarrow x-1-2x+6>0\)

\(\Leftrightarrow-x+5>0\)

\(\Leftrightarrow x>5\)( thỏa mãn ĐKXĐ )

Vậy....

14 tháng 2 2019

a) Dùng bảng xét dấu xem sao (tự lập):v

+)Với \(x< -\frac{3}{2}\);phương trình trở thành:

\(x+3=x-1\Leftrightarrow0=-4\) (vô lí,loại)

+)Với \(-\frac{3}{2}\le x< 0\);phương trình trở thành:

\(-3x-3=x-1\Leftrightarrow4x=-2\Leftrightarrow x=-\frac{1}{2}\) (t/m)

+)Với \(x\ge0\);phương trình trở thành:

\(-x-3=x-1\Leftrightarrow2x=-2\Leftrightarrow x=-1\) (loại)

Vậy tập hợp nghiệm của phương trình: \(x=\left\{-\frac{1}{2}\right\}\)

13 tháng 2 2019

d) x+1/2019 + x+3/2017 = x+5/2015 + x+7/2013

<=> x+1/2019 + x+3/2017 - x+5/2015 - x+7/2013 =0

<=> ( x+1/2019 + 1) + ( x+3/2017 + 1) - ( x+5/2015 + 1) - ( x+7/2013 +1) = 0

<=> ( x+1+2019/2019) +(x+3+2017/2017) - ( x+5+2015/2015) -   ( x+7+2013/2013) =0

<=> x+2020/2019 + x+2020/2017 - x+2020/2015 - x+2020/2013 =0

<=> (x+2020)× ( 1/2019 + 1/2017 - 1/2015 - 1/2013) =0

Mà 1/2019 + 1/2017 - 1/2015 - 1/2013  khác 0

=> x+2020 =0

=> x = -2020

13 tháng 2 2019

\(\left(x-1\right)=\left(x-1\right)\left(x-2\right)\)

\(\Leftrightarrow\left(x-1\right)-\left(x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)

HOẶC\(x-1=0\Leftrightarrow x=1\)(NHẬN)

HOẶC\(x-3=0\Leftrightarrow x=3\)(NHẬN)

VẬY: tập ngiệm của pt là S={1;3}

13 tháng 2 2019

\(\Rightarrow\left(x-7\right)\left(x^2-x+1\right)=\left(x^2+1\right)\left(x+6\right)\)

\(\Leftrightarrow x^3-8x^2+8x-7=x^3+6x^2+x+6\)

\(\Leftrightarrow-8x^2+8x-7=6x^2+x+6\)

\(\Leftrightarrow14x^2-7x+13=0\)

Mà \(14x^2-7x+13=14\left(x-\frac{1}{4}\right)^2+\frac{97}{8}>0\forall x\)

Vậy phương trình có tập nghiệm: \(S=\varnothing\)

17 tháng 2 2019

có bạn nào giải hộ mình theo cách giải phương trình ko

hộ mình với

 
13 tháng 2 2019

Áp dụng Ta lét trong tam giác ABC (EF//BC),ta có

\(\frac{AE}{AB}=\frac{AF}{AC}=\frac{EF}{BC}\Leftrightarrow\frac{3}{3+6}=\frac{1}{3}=\frac{AF}{AF+5}=\frac{6}{BC}\)

NÊN \(\frac{AF}{AF+5}=\frac{1}{3}\Leftrightarrow3AF=AF+5\Leftrightarrow AF=\frac{5}{2}\)

                 \(\Rightarrow AC=AF+FC=2,5+5=7,5\)

        \(\frac{6}{BC}=\frac{1}{3}\Leftrightarrow BC=18\)

13 tháng 2 2019

Chứng minh BĐT Cauchy-schwarz:

Xem câu hỏi

Áp dụng BĐT Cauchy-schwarz ta có:

\(P=a^2+2b^2+3c^2=a^2+\frac{b^2}{\frac{1}{2}}+\frac{c^2}{\frac{1}{3}}\ge\frac{\left(a+b+c\right)^2}{1+\frac{1}{2}+\frac{1}{3}}=\frac{1}{\frac{11}{6}}=\frac{6}{11}\)

Dấu " = " xảy ra \(\Leftrightarrow a=2b=3c\)

\(\Leftrightarrow b=\frac{3}{2}c\)

Có: \(a+b+c=1\)

\(\Leftrightarrow3c+\frac{3}{2}c+c=1\)

\(\Leftrightarrow\frac{11}{2}c=1\Leftrightarrow c=\frac{2}{11}\)

\(\Leftrightarrow\hept{\begin{cases}a=3c=\frac{6}{11}\\b=\frac{3}{2}c=\frac{3}{11}\end{cases}}\)

Vậy \(P_{min}=\frac{6}{11}\Leftrightarrow\hept{\begin{cases}a=\frac{6}{11}\\b=\frac{3}{11}\\c=\frac{2}{11}\end{cases}}\)

14 tháng 2 2019

Thử cách này có phải ý bạn không:

\(P=\left(a^2+\frac{36}{121}\right)+\left(2b^2+\frac{18}{121}\right)+\left(3c^2+\frac{12}{121}\right)-\frac{6}{11}\)

\(\ge2\sqrt{a^2.\frac{36}{121}}+2\sqrt{2b^2.\frac{18}{121}}+2\sqrt{3c^2.\frac{12}{121}}-\frac{6}{11}\)

\(=\frac{12\left(a+b+c\right)}{11}-\frac{6}{11}=\frac{12}{11}-\frac{6}{11}=\frac{6}{11}\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}a^2=\frac{36}{121}\\2b^2=\frac{18}{121}\\3c^2=\frac{12}{121}\end{cases}}\) và a,b,c > 0 tức là \(\hept{\begin{cases}a=\frac{6}{11}\\b=\frac{3}{11}\\c=\frac{2}{11}\end{cases}}\) (t/m)

Vậy \(P_{min}=\frac{6}{11}\Leftrightarrow\)\(\hept{\begin{cases}a=\frac{6}{11}\\b=\frac{3}{11}\\c=\frac{2}{11}\end{cases}}\)