K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2017

a, \(x+y+z=0\)

\(\Rightarrow x+y=-z\)

\(\Leftrightarrow\left(x+y\right)^3=-z^3\)

\(\Leftrightarrow x^3+3x^2y+3xy^2+y^3=-z^3\)

\(\Leftrightarrow x^3+y^3+z^3=-3xy\left(x+y\right)\)

\(\Leftrightarrow x^3+y^3+z^3=3xyz\)(vì x+y=-z)

30 tháng 12 2017

Cảm ơn ạ

29 tháng 12 2017

Có phải thế này ko nhỉ:

=> a^2(a + 3b) = 5

            a + 3b = 5/a^2

            a         = 5/a^2 - 3b 

=> b^2(b + 3a) = 10

            b + 3a = 10/b^2

            b         = 10/b^2 - 3a

A= 2017a + 2017b

A= 2017(a + b)

A= 2017( 5/a^2 - 3b + 10/b^2 - 3a)

A=.....

29 tháng 12 2017

Câu hỏi của Nguyễn Thiều Công Thành - Toán lớp 9 - Học toán với OnlineMath

27 tháng 12 2017

Ta có : \(\frac{x}{x^2+1}=\frac{1}{12}\)

=> 12x = x2 + 1

=> x2 - 12x + 1 = 0

=> x2 - 12x + 36 - 35 = 0 

=> (x - 6)2 = 35

\(\Leftrightarrow\orbr{\begin{cases}x-6=\sqrt{35}\\x-6=-\sqrt{35}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=6+\sqrt{35}\\x=6-\sqrt{35}\end{cases}}\)

27 tháng 12 2017

\(\frac{x}{x^2+1}=\frac{1}{12}\Leftrightarrow x^2+1=12x\Leftrightarrow x^2-12x+1=0.\)

Giải phương trình bậc hai, được hai giá trị : \(x_1=6-\sqrt{35}.\)  \(x_2=6+\sqrt{35}\)

27 tháng 12 2017

ta có A=\(\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}+\frac{a^2}{2}+\frac{b^2}{2}+\frac{c^2}{2}=\frac{a^2+b^2+c^2}{abc}+\frac{a^2}{2}+\frac{b^2}{2}+\frac{c^2}{2}\)

mà \(a^2+b^2+c^2\ge ab+bc+ca\Rightarrow\frac{a^2+b^2+c^2}{abc}\ge\frac{ab+bc+ca}{abc}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

\(\Rightarrow A\ge\frac{a^2}{2}+\frac{b^2}{2}+\frac{c^2}{2}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{a^2}{2}+\frac{1}{2a}+\frac{1}{2a}+...\)

Áp dụng bđt co si ta có , \(\frac{a^2}{2}+\frac{1}{2a}+\frac{1}{2a}\ge\frac{1}{\sqrt{2}}\)

tương tự mấy cái kia rồi + vào thì A>=...

26 tháng 12 2017

=(x2+2xy+y2)+(y2-4yz+4z2)+(y2-2y+1)+(z2-2z+1)-4x-2y-4z+5

=(x+y)2-4(x+y)+4 +(y-2z)2+2(y-2z)+1 +(y-1)2+(z-1)2

=(x+y-2)2+(y-2z+1)2+(y-1)2+(z-1)2\(\ge0\)\(\forall_{x,y,z}\)

Lai co (x+y-2)2+(y-2z+1)2+(y-1)2+(z-1)2\(\le\)0

=> (x+y-2)2+(y-2z+1)2+(y-1)2+(z-1)2=0

Dau = xay ra khi x=y=z=1

26 tháng 12 2017

ừm :.....trước tiên bạn hãy khắc sâu luôn tâm thức luôn nhà : định lý Vi-ét không những đúng với phương trình bậc 2 mà đúng với phương trình bậc 3, bậc 4 luôn bạn à.....Điều này có nghĩa là nó phải có 2 nghiệm phân biệt....:)>-:)>-:)>- và đúng luôn trên tập số phức luôn.....
+ Giả sử mình có phương trình bậc 2 là : 
ax2+bx+c=0ax2+bx+c=0
Nếu nó có 2 nghiệm phân biệt : tức "Đenta" >0
khi đó 
x1x1 = −b+denta2a−b+denta2a
tương tự x2x2 = −b−denta2a−b−denta2a
bạn cộng x1x1 và x2x2 sẽ có kết quả : −ba−ba
+ Làm tương tự x1.x2x1.x2 = caca
Như vậy Định lý Vi-ét đã được chứng minh hjhjhjừm :.....trước tiên bạn hãy khắc sâu luôn tâm thức luôn nhà : định lý Vi-ét không những đúng với phương trình bậc 2 mà đúng với phương trình bậc 3, bậc 4 luôn bạn à.....Điều này có nghĩa là nó phải có 2 nghiệm phân biệt....:)>-:)>-:)>- và đúng luôn trên tập số phức luôn.....
+ Giả sử mình có phương trình bậc 2 là : 
ax2+bx+c=0ax2+bx+c=0
Nếu nó có 2 nghiệm phân biệt : tức "Đenta" >0
khi đó 
x1x1 = −b+denta2a−b+denta2a
tương tự x2x2 = −b−denta2a−b−denta2a
bạn cộng x1x1 và x2x2 sẽ có kết quả : −ba−ba
+ Làm tương tự x1.x2x1.x2 = caca
Như vậy Định lý Vi-ét đã được chứng minh hjhjhj

26 tháng 12 2017

viết 2 lần cho máu

26 tháng 12 2017

Toán Tuổi Thơ 2 số 178 Bài 6 chứ gì

Ta có:\(xy+yz+zx+x+y+z\)

\(=xyz+xy+yz+zx+x+y+z+1-xyz-1\)

\(=xy\left(z+1\right)+x\left(z+1\right)+y\left(z+1\right)+\left(z+1\right)-xyz-1\)

\(=\left(xy+x+y+1\right)\left(z+1\right)-xyz-1\)

\(=\left[x\left(y+1\right)+\left(y+1\right)\right]\left(z+1\right)-xyz-1\)

\(=\left(x+1\right)\left(y+1\right)\left(z+1\right)-xyz-1\)

Lần lượt thay \(x=\frac{b}{a-b};y=\frac{c}{b-c};z=\frac{a}{c-a}\) vào ta có:

\(xy+yz+zx+x+y+z\)

\(=\left(\frac{b}{a-b}+1\right)\left(\frac{c}{b-c}+1\right)\left(\frac{a}{c-a}+1\right)-\frac{b}{a-b}.\frac{c}{b-c}.\frac{a}{c-a}-1\)

\(=\frac{a}{a-b}.\frac{b}{b-c}.\frac{c}{c-a}-\frac{b}{a-b}.\frac{c}{b-c}.\frac{a}{c-a}-1\)

\(=-1\)

Vậy giá trị của \(xy+yz+zx+x+y+z\) không phụ thuộc vào a,b,c