Cho đường tròn tâm O. Đường thẳng d cố định không đi qua O, d cắt (O) tại C, D. Từ điểm M bất kì trên d ( C nằm giữa M và D), kẻ các tiếp tuyến MA, MB với đường tròn. AB cắt OM tại điểm H. I là trung điểm CD. Chứng minh HA là tia phân giác của góc CHD. Đúng mình tick cho nha!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
A = \(\dfrac{n+2}{n-3}\) (n \(\in\)N; n ≠ 3)
Gọi ƯCLN(n +2; n - 3) = d
Ta có: \(\left\{{}\begin{matrix}n+2⋮d\\n-3⋮d\end{matrix}\right.\)
n + 2 - (n - 3) ⋮ d
n + 2 - n + 3 ⋮ d
(n - n) + (2 + 3) ⋮ d
5 ⋮ d
d = 1; 5
Để A tối giản thì d ≠ 5
n - 3 ≠ 5k (k \(\in\) N*)
n ≠ 5k + 3
Vậy để A tối giản thì n ≠ 5k + 3; k \(\in\) N*
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\dfrac{a}{7}+\dfrac{1}{14}=-\dfrac{1}{b}\)
\(\Rightarrow\dfrac{2a+1}{14}=\dfrac{-1}{b}\)
\(\Rightarrow\left(2a+1\right)b=-14\)
Do 2a+1 luôn lẻ khi a là số nguyên nên ta chỉ cần xét các trường hợp \(2a+1\) là ước lẻ của -14
Ta có bảng sau:
2a+1 | -7 | -1 | 1 | 7 |
b | 2 | 14 | -14 | -2 |
a | -4 | -1 | 0 | 3 |
Vậy \(\left(a;b\right)=\left(-4;-2\right);\left(-1;14\right);\left(0;-14\right);\left(3;-2\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14
= 1 + (14 + 1) x 14 : 2
= 1 + 15 x 14 : 2
= 1 + 15 x 7
= 1 + 105
= 106
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 5:
30 phút = \(\dfrac{1}{2}\) giờ
Thời gian gia đình bạn Tuấn đi từ Hà Nội tới Phan Thiết tới là:
\(\dfrac{13}{4}\) + \(\dfrac{1}{2}\) + \(\dfrac{13}{3}\) = \(\dfrac{97}{12}\) giờ
\(\dfrac{95}{12}\) giờ = 8 giờ 5 phút
b; Gia đình bạn Tuấn đến thành Phố Phan Thiết lúc:
6 giờ + 8 giờ 5 phút = 14 giờ 5 phút
Kl...
Bài 6:
a; -3 - \(\dfrac{2}{5}\) ≤ \(x\) ≤ \(\dfrac{1}{2}\) - \(\dfrac{-3}{4}\)
- \(\dfrac{17}{5}\) ≤ \(x\) ≤ \(\dfrac{5}{4}\)
-3,4 ≤ \(x\) ≤ 1,25
Vì \(x\) là số nguyên nên \(x\) \(\in\) {-3; -2; -1; 0; 1}
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C D E I H K F O G
a/
Xét \(\Delta ABC\)
AD và BE cắt nhau tại H (gt)
\(\Rightarrow CH\perp AB\) (trong tam giác 3 đường cao đồng quy)
b/ Gọ F là giao của CH với AB ta có
F và D cùng nhìn BH dưới 1 góc \(90^o\) => F và H nằm trên đường tròn đường kính BH => Tứ giác BFHD là tứ giác nội tiếp)
Ta có
\(sđ\widehat{ABC}=\dfrac{1}{2}sđcungFHD\) (góc nt đường tròn)
\(sđ\widehat{FHD}=\dfrac{1}{2}sđcungFBD\) (góc nt đường tròn)
\(\Rightarrow sđ\widehat{ABC}+sđ\widehat{FHD}=\dfrac{1}{2}\left(sđcungFHD+sđcungFBD\right)\)
Mà \(sđcungFHD+sđcungFBD=360^o\)
\(\Rightarrow sđ\widehat{ABC}+sđ\widehat{FHD}=\dfrac{1}{2}.360^o=180^o\)
Mà \(\widehat{CHI}+\widehat{FHD}=\widehat{FHC}=180^o\)
\(\Rightarrow\widehat{CHI}=\widehat{ABC}\) (cùng bù với \(\widehat{FHD}\) ) (1)
Xét (O) có
\(\widehat{ABC}=\widehat{AIC}\) (góc nt đường tròn cùng chắn cung AC) (2)
Từ (1) và (2) \(\Rightarrow\widehat{CHI}=\widehat{AIC}\) => tg CHI cân tại C
c/
Chứng minh tương tự ta cũng có CHK là tg cân tại C
Ta có
\(BE\perp AC\left(gt\right)\Rightarrow AC\perp HK\)
\(\Rightarrow EH=EK\) (trong tg cân đường cao xp từ đỉnh tg cân đồng thời là đường trung tuyến)
=> H đối xứng K qua AC
d/ Gọi G là giao của CO với (O)
Ta có tg CHK cân tại C (cmt)
=> CK=CH
Mà tg CHI cân tại C (cmt) => CH=CI
=> CK=CI => tg CKI cân tại C (3)
Ta có
\(sđ\widehat{CKI}=\dfrac{1}{2}sđcungCI\) (góc nt (O))
\(sđ\widehat{CIK}=\dfrac{1}{2}sđcungCK\) (góc nt (O))
\(\Rightarrow sđcungCI=sđcungCK\)
Ta có
sđ cung CIG = sđ cung CKG \(=180^o\)
=> sđ cung CIG - sđ cung CI = sđ cung CKG - sđ cung CK
=> sđ cung GBI = sđ cung GAK
Ta có
\(sđ\widehat{ICG}=\dfrac{1}{2}sđcungGBI\) (góc nt (O))
\(sđ\widehat{KCG}=\dfrac{1}{2}sđcungGAK\) (góc nt (O))
\(\Rightarrow\widehat{ICG}=\widehat{KCG}\) => CG là phân giác của \(\widehat{KCI}\) (4)
Từ (3) và (4) => \(OC\perp KI\) (trong tg cân đường phân giác của góc ở đỉnh tg cân đồng thời là đường cao)
e/
Ta có E và D cùng nhìn CH dưới 1 góc \(90^o\) => CDHE là tứ giác nội tiếp
\(\Rightarrow\widehat{HDE}=\widehat{ECF}\) (góc nt cùng chắn cung HE) (5)
Ta có F và E cùng nhìn BC dưới 1 góc \(90^o\) => BCEF là tứ giác nt
\(\Rightarrow\widehat{ABK}=\widehat{ECF}\) (góc nt cùng chắn cung EF) (6)
Xét (O) có
\(\widehat{ABK}=\widehat{AIK}\) (góc nt cùng chắn cung AK) (7)
Từ (5) (6) (7) \(\Rightarrow\widehat{HDE}=\widehat{AIK}\) mà 2 góc này ở vị trí đồng vị nên
=> ED//KI
Mà \(OC\perp KI\left(cmt\right)\)
\(\Rightarrow OC\perp ED\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\widehat{A}\) : \(\widehat{B}\): \(\widehat{C}\) = 3 : 5 : 7
\(\dfrac{\widehat{A}}{3}\) = \(\dfrac{\widehat{B}}{5}\) = \(\dfrac{\widehat{C}}{7}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{\widehat{A}}{3}\) = \(\dfrac{\widehat{B}}{5}\) = \(\dfrac{\widehat{C}}{7}\) = \(\dfrac{\widehat{A}+\widehat{B}+\widehat{C}}{3+5+7}\) = \(\dfrac{180^0}{15}\) = `120
\(\widehat{A}\) = 120 \(\times\) 3 = 360
\(\widehat{B}\) = 120 \(\times\) 5 = 600
\(\widehat{C}\) = 120 \(\times\) 7 = 840
Vì 360 < 600 < 840
Vậy \(\widehat{A}\) < \(\widehat{B}\) < \(\widehat{C}\) nên BC < AC < AB (do trong tam giác cạnh đối diện với góc lớn hơn thì lớn hơn và ngược lại)