K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 9 2017

ĐK : \(x\ge2\)

\(pt\Leftrightarrow\left(x^2+5x+8\right)^2=4\left(x-2\right)\)

\(\Leftrightarrow x^4+25x^2+64+10x^3+80x+16x^2=4x-8\)

\(\Leftrightarrow x^4+10x^3+41x^2+80x+64=4x-8\)

\(\Leftrightarrow x^4+10x^3+41x^2+76x+72=0\)

\(\Leftrightarrow\left(x^4+10x^3+25x^2\right)+\left(16x^2+76x+\frac{361}{4}\right)-\frac{81}{4}=0\)

\(\Leftrightarrow\left(x^2+5x\right)^2+\left(4x+\frac{19}{2}\right)^2-\frac{81}{4}=0\)(*)

Theo đkxđ thì \(x\ge2\) nên \(\left(x^2+5x\right)^2\ge\left(2^2+5.2\right)^2=196>\frac{81}{4}\)

Nên \(\left(x^2+5x\right)^2+\left(4x+\frac{19}{2}\right)^2>\frac{81}{4}\) nên \(\left(x^2+5x\right)^2+\left(4x+\frac{19}{2}\right)^2-\frac{81}{4}>0\)

Từ đó => (*) không xảy ra hay pt trên vô nghiệm

25 tháng 9 2017

phương trình này vô nghiệm

25 tháng 9 2017

khó dữ dzậy

25 tháng 9 2017

đậu xanh hình 9

25 tháng 9 2017

kẻ đường cao AH 
tg B =AH/HB=>HB=AH/tg B 
tg C=AH/CH => CH=AH/tg C 
ta có HB+HC=AH/tg B +AH/tg C hay AH(1/tg40*+1/tg55*)=40 
=> AH=21,1421(kết quả gần đúng) 
diện tích tam giác ABC = (AH.BC)/2 =422,842  

25 tháng 9 2017

  + từ x^2+y^2+xy=1 => (x - 1/2*y)^2 + 3/4*y^2 = 1 
đặt x - 1/2*y = sina và √3/2*y = cosa <> y = 2cosa / √3 và x = sina + cosa /√3 
thay vào b ta có 
b = (sina + cosa/√3)^2 - ( sina + cosa/√3). 2cosa/√3 + 8/3*(cosa)^2 
= (sina)^2 + sin2a/√3 + (cosa)^2/3 - sin2a/√3 - 2/3*(cosa)^2 + 8/3*(cosa)^2 
= (sina)^2 + 7(cosa)^2 / 3 = 1+ 4(cosa)^2 / 3 = 1 + 2(1 + cos2a) / 3 = 5/3 + 2cos2a/ 3 
=> 1=< b <=7/3 
+ min = 1 khi cos2a = -1 hay cosa = 0 <> y = 0 và x = +- 1 
+ max = 7 / 3 khi cos2a = 1 hay sina = 0 <> x = 1 + 1/√3 và y = 2 / √3 hoạc x = 1 - 1 / √3 
và y = -2 / √3

27 tháng 9 2020

Cho sửa đề \(\frac{2+\sqrt{3}}{x^2+y^2}\)thành \(\frac{2+\sqrt{3}}{x^2-y^2}\)nhezz :"))

\(\frac{2}{x^2-y^2}\sqrt{\frac{3\left(x+y\right)^2}{2}}\)

\(=\frac{\left|x+y\right|}{x^2-y^2}\sqrt{\frac{3.2^2}{2}}\)

\(=\frac{\left(x+y\right)}{\left(x-y\right)\left(x+y\right)}\sqrt{6}\)

\(=\frac{1}{x-y}\sqrt{6}\)

( Có | x + y | = x + y . Do x + y > 0 vì \(x\ge0,y\ge0\)và \(x\ne y\))

25 tháng 9 2017

 cũng quy đồng, bạn đưa về pt : 
6x -xy +6y +1 = 0 
hay x( 6-y ) = -1-6y 
x, y nguyên : 
-1-6y chia hết cho 6-y 
hay 6.(6-y) - 37 chia hết cho 6-y 
vậy 6-y là ước của 37 
bạn lại lập bảng ( hay giải từng cái cũng được ) tìm ra y , sau đó tìm x 
( nhớ thử lại , và lấy x, y nguyên )  

30 tháng 12 2018

Tìm nghiệm nguyên của phương trình : 1/x + 1/y + 1/6xy=1/6

6x -xy +6y +1 = 0 
hay x( 6-y ) = -1-6y 
x, y nguyên : 
-1-6y chia hết cho 6-y 
hay 6.(6-y) - 37 chia hết cho 6-y 
vậy 6-y là ước của 37