Cho hàm số y=f(x) có đồ thị như hình vẽ. Hỏi phương trình \(f\left(x^3-2x^2+14x+\sqrt{17}\right)=\sqrt{17}\) có bao nhiêu nghiệm thực?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do \(A\left(2;-1\right)\) tiếp xúc với đường thẳng \(\Delta:-2x+10y-7=0\) nên \(d\left(A,\Delta\right)=R\) hay \(R=\dfrac{\left|-2.2+10.\left(-1\right)-7\right|}{\sqrt{\left(-2\right)^2+10^2}}=\dfrac{21\sqrt{26}}{52}\)
Vậy bán kính của đường tròn cần tìm là \(R=\dfrac{21\sqrt{26}}{52}\)
Xét đường thẳng d2, ta có: \(x=2+t\Rightarrow t=x-2\)
\(\Rightarrow y=6+2\left(x-2\right)=2x+2\) \(\Leftrightarrow2x-y+2=0\)
Vậy \(d_2:2x-y+2=0\)
Giao điểm của d1 và d2 thỏa mãn hệ phương trình:
\(\left\{{}\begin{matrix}4x+3my-m^2=0\\2x-y+2=0\end{matrix}\right.\). Để giao điểm này nằm trên trục tung thì \(x=0\). Do đó \(\left\{{}\begin{matrix}3my-m^2=0\\2-y=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=2\\6m-m^2=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=0\\m=6\end{matrix}\right.\)
Vậy để d1 cắt d2 tại 1 điểm trên trục tung thì \(m=0\) hoặc \(m=6\)