K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2016

Ngọc có cách khác : 

Trong mặt phẳng tọa độ , ta chọn các điểm \(A\left(a;0\right)\) , \(B\left(\frac{b}{2};\frac{b\sqrt{3}}{2}\right)\) ; \(C\left(-\frac{c}{2};\frac{c\sqrt{3}}{2}\right)\)

Khi đó : \(AB=\sqrt{\left(\frac{b}{2}-a\right)^2+\left(\frac{b\sqrt{3}}{2}\right)^2}=\sqrt{a^2-ab+b^2}\)

\(BC=\sqrt{\left(\frac{b}{2}+\frac{c}{2}\right)^2+\left(\frac{c\sqrt{3}}{2}-\frac{b\sqrt{3}}{2}\right)^2}=\sqrt{b^2-bc+c^2}\)

\(AC=\sqrt{\left(-\frac{c}{2}-a\right)^2+\left(\frac{c\sqrt{3}}{2}\right)^2}=\sqrt{a^2+ac+c^2}\)

Mà trong ba điểm thì ta luôn có : \(AB+BC\ge AC\)

Vậy \(\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}\ge\sqrt{a^2+ac+c^2}\)

22 tháng 10 2016

Bình phương 2 vế rồi rút gọn ta được

\(2\sqrt{\left(a^2-ab+b^2\right)\left(b^2-bc+c^2\right)}\ge ab+bc-ac-2b^2\)

Tiếp tục bình phương 2 vế rồi rút gọn ta được

\(3a^2b^2+3b^2c^2+3a^2c^2-2a^2bc-2ab^2c-2abc^2\ge0\)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+\left(ab-ac\right)^2+\left(ab-bc\right)^2+\left(bc--ac\right)^2\ge0\)

=> ĐPCM là đúng và đạt được khi a = b = c = 0

23 tháng 10 2016

\(\left|x+m\right|=2+\left|x-m\right|\) ( Hai vế đều dương nên bình phương hai vế không cần điều kiện)

\(\Leftrightarrow x^2+2mx+m^2=4+4\left|x-m\right|+x^2-2mx+m^2\) 

\(\Leftrightarrow4mx=4+4\left|x-m\right|\)

\(\Leftrightarrow mx=1+\left|x-m\right|\)

\(\Leftrightarrow mx-1=\left|x-m\right|\) (1)  Điều kiện: \(mx-1\ge0\) (*)

Với: \(mx-1\ge0\) 

\(\left(1\right)\Leftrightarrow m^2x^2-2mx+1=x^2-2mx+m^2\)

\(\Leftrightarrow m^2x^2+1=x^2+m^2\)

\(\Leftrightarrow\left(m^2-1\right)x^2=m^2-1\) (2)

TH1: \(\left(m^2-1\right)=0\Leftrightarrow\orbr{\begin{cases}m=1\\m=-1\end{cases}}\)

+ Với \(m=1\) thì  \(\hept{\begin{cases}\left(\text{*}\right)\Leftrightarrow x\ge1\\\left(2\right)\Leftrightarrow0=0\left(\text{luôn đúng với mọi x}\right)\end{cases}}\Leftrightarrow x\ge0\) 

+ Với \(m=-1\) thì \(\hept{\begin{cases}\left(\text{*}\right)\Leftrightarrow x\le-1\\\left(2\right)\Leftrightarrow0=0\left(\text{luôn đúng với mọi x }\right)\end{cases}\Leftrightarrow}x\le-1\)

TH2: Với \(m=0\) thì \(\left(\text{*}\right)\Leftrightarrow0-1\ge0\) ( vô lý ) => vô nghiệm

TH3: \(\left(m^2-1\right)\ne0\Leftrightarrow\orbr{\begin{cases}m\ne1\\m\ne-1\end{cases}}\)

+ Với: \(\hept{\begin{cases}m< 0\\m\ne-1\end{cases}}\) thì \(\hept{\begin{cases}\left(\text{*}\right)\Leftrightarrow x\le\frac{1}{m}\\\left(2\right)\Leftrightarrow x^2=\frac{m^2-1}{m^2-1}=1\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(\text{*}\right)\Leftrightarrow x\le\frac{1}{m}< 0\\x=\text{1 hoặc -1}\end{cases}}\Leftrightarrow x=-1\) 

+ Với: \(\hept{\begin{cases}m>0\\m\ne1\end{cases}}\) thì \(\hept{\begin{cases}\left(\text{*}\right)\Leftrightarrow x\ge\frac{1}{m}\\\left(2\right)\Leftrightarrow x^2=\frac{m^2-1}{m^2-1}=1\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(\text{*}\right)\Leftrightarrow x\ge\frac{1}{m}>0\\\left(2\right)\Leftrightarrow x^2=\text{1 hoặc -1}\end{cases}}\Leftrightarrow x=1\)

Tự kết luận nhé

23 tháng 10 2016

\(\left|x+m\right|=2+\left|x-m\right|\)

\(\Leftrightarrow\left(\left|x+m\right|\right)^2=\left(2+\left|x-m\right|\right)^2\)

\(\Leftrightarrow x^2+2mx+m^2=m^2-2mx-4m+x^2+4x+4\)

\(\Leftrightarrow4mx+4m-4x-4=0\)

\(\Leftrightarrow4\left(m-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left(m-1\right)\left(x+1\right)=0\)

.....

20 tháng 10 2016

Ta gán : \(1992\rightarrow D\)\(1992\rightarrow A\)

\(D=D+1:A=D.\sqrt[D]{A}\)

CALC , bấm liên tiếp dấu "=" cho đến khi D = 2013 thì dừng.

Sau đó bấm \(\frac{Ans}{D}\) sẽ ra kết quả cần tính.

20 tháng 10 2016
Sao duyệt mãi thế =="
20 tháng 10 2016

Chữ số 2.

kick cho mình nha.

20 tháng 10 2016

Ta có \(A=3.3^n+3^n-1=4.3^n-1\)

\(B=6.3^n-3^n+1=5.3^n+1\)

Khi đó \(A+B=4.3^n-1+5.3^n+1=9.3^n=3^{n+2}\)

Vì (3;7) = 1 nên A + B không chia hết cho 7.

Vậy trong A và B tồn tại ít nhất 1 số không chia hết cho 7.

7 tháng 4 2017

Xét các dạng của n trong phép chia cho 2 và 3

2k  , 2k+1

3p, 3p+1. 3p+2

19 tháng 10 2016

Giả sử \(_{\sqrt{7}}\) là số hữu tỉ

\(\Rightarrow\sqrt{7}\)=\(\frac{a}{b}\) ( \(a,b\in Z;b\ne0\))

Giả sử (a;b)=1

\(\Rightarrow7=\frac{a^2}{b^2}\)

\(\Rightarrow a^2=7b^2\)

\(\Rightarrow a\) chia hết cho 7

\(\Rightarrow a^2\)chia hết cho 49

\(\Rightarrow7b^2\)chia hết cho 49

\(\Rightarrow b^2\)chia hết cho 7

Mà \(\left(a;b\right)\ne1\) trái với giả sử

=> Giả sử sai

=> \(\sqrt{7}\) là số vô tỷ

18 tháng 10 2016

Đây là câu 21 của đề minh họa thị THPT QG 2017.

Lãi suất 12%/năm => lãi suất 1%/tháng.

Nếu còn nợ a đồng thì phải trả lãi 0,01 a cho 1 tháng.

Sau tháng đầu tiên, sau khi trả m đồng thì ông A còn  nợ là:

     (a + 0,01.a) - m = a. 1,01 - m

Sau tháng thứ hai, sau khi trả tiếp m đồng thì ông A còn nợ là:

   (a . 1,01 - m) . 1,01 - m

Sau tháng thứ ba, sau khi trả tiếp m đồng thì ông A còn nợ là:

    [(a. 1,01 - m) . 1,01 - m] . 1,01 - m

Con số nợ cuối cùng này phải bằng 0, suy ra:

   [(a. 1,01 - m) . 1,01 - m] . 1,01 - m = 0

=> \(m=\frac{a.1,01^3}{1,01^2+1,01+1}=\frac{a.1,01^3\left(1,01-1\right)}{1,01^3-1}=\frac{a.1,01^3.0,01}{1,01^3-1}\)

Thay a = 100 vào ta có:

  \(m=\frac{1,01^3}{1,01^3-1}\)

20 tháng 10 2016

Đặt: \(x_1=\sqrt{a^2}\)

\(x_2=\sqrt{a^2+\sqrt{a^2}}\)

\(x_3=\sqrt{a^2+\sqrt{a^2+\sqrt{a^2}}}\)

...

\(x_n=\sqrt{a^2+\sqrt{a^2+...+\sqrt{a^2}}}\) ( n dấu căn )

Ta có: \(a\ne0\Rightarrow0< x_1< x_2< x_3< ...< x_{n-1}< x_n\)

Từ: \(x_n=\sqrt{a^2+\sqrt{a^2+...+\sqrt{a^2}}}\Rightarrow x_n^2=a^2+\sqrt{a^2+...+\sqrt{a^2}}\)  (n-1 dấu căn ) \(=a^2+x_{n-1}\) 

\(\Rightarrow x_n^2-a^2=x_{n-1}< x_n\Rightarrow x_n^2-a^2< x_n\Rightarrow x_n^2-x_n-a^2< 0\)

\(\Rightarrow\left(x_n-\frac{1}{2}\right)^2-\frac{1}{4}-a^2< 0\Rightarrow\left(x_n-\frac{1}{2}\right)^2< \frac{1+4a^2}{4}\Rightarrow x_n< \frac{1}{2}+\frac{\sqrt{1+4a^2}}{2}\) (1)

Ta cần chứng minh: \(\frac{1}{2}+\frac{\sqrt{1+4a^2}}{2}< \frac{1}{2}+\frac{1}{8}\left(\sqrt{1+16a^2}+\sqrt{9+16a^2}\right)\) (2)

Thật vậy, ta có: \(\left(2\right)\Leftrightarrow\frac{\sqrt{1+4a^2}}{2}< \frac{1}{8}\left(\sqrt{1+16a^2}+\sqrt{9+16a^2}\right)\)

\(\Leftrightarrow4\sqrt{1+4a^2}< \sqrt{1+16a^2}+\sqrt{9+16a^2}\)

\(\Leftrightarrow16\left(1+4a^2\right)< 10+32a^2+2\sqrt{\left(1+16a^2\right)\left(9+16a^2\right)}\)

\(\Leftrightarrow32a^2+6< 2\sqrt{\left(1+16a^2\right)\left(9+16a^2\right)}\)

\(\Leftrightarrow16a^2+3< \sqrt{\left(1+16a^2\right)\left(9+16a^2\right)}\)

\(\Leftrightarrow256a^4+96a^2+9< 9+160a^2+256a^4\)

\(\Leftrightarrow-64a^2< 0\) ( luôn đúng với mọi a khác 0)

=> Bất đẳng thức (2) đúng

Từ \(\left(1\right),\left(2\right)\Rightarrow x_n< \frac{1}{2}+\frac{1}{8}\left(\sqrt{1+16a^2}+\sqrt{9+16a^2}\right)\)

\(\Leftrightarrow\sqrt{a^2+\sqrt{a^2+...+\sqrt{a}}}< \frac{1}{2}+\frac{1}{8}\left(\sqrt{1+16a^2}+\sqrt{9+16a^2}\right)\)

21 tháng 10 2016

Ngọc bổ sung một cách khác nhé :))

Ta xét vế trái, vì dễ thấy \(\sqrt{a^2+\sqrt{a^2+...+\sqrt{a^2}}}\) (n dấu căn) \(< \sqrt{a^2+\sqrt{a^2+\sqrt{a^2+...}}}\)(vô hạn dấu căn)

Ta đặt \(\sqrt{a^2+\sqrt{a^2+\sqrt{a^2+...}}}=t,t\ge0\)

\(\Rightarrow t^2=t+a^2\Rightarrow t^2-t-a^2=0\)

Ta đưa phương trình trên về phương trình bậc hai ẩn t , khi đó \(\Delta=1+4a^2>0\Rightarrow t=\frac{1+\sqrt{1+4a^2}}{2}\) (vì \(t\ge0\))

Do vậy ta chỉ cần chứng minh \(\frac{1+\sqrt{1+4a^2}}{2}< \frac{1}{2}+\frac{1}{8}\left(\sqrt{1+16a^2}+\sqrt{9+16a^2}\right)\)

\(\Leftrightarrow4\sqrt{1+4a^2}< \sqrt{1+16a^2}+\sqrt{9+16a^2}\)

\(\Leftrightarrow16\left(1+4a^2\right)< 32a^2+10+2\sqrt{1+16a^2}.\sqrt{9+16a^2}\)

\(\Leftrightarrow16a^2+3< \sqrt{1+16a^2}.\sqrt{9+16a^2}\)

\(\Leftrightarrow\left(16a^2+3\right)^2< \left(16a^2+1\right)\left(16a^2+9\right)\)

\(\Leftrightarrow16^2a^4+96a^2+9< 16^2a^4+160a^2+9\)

\(\Leftrightarrow0< 64a^2\) (luôn đúng với \(a\ne0\))

Vậy ta có đpcm.