CM \(\left(1+x_1\right)\left(1+x_2\right)......\left(1+x_n\right)\ge1+x_1+x_2+...+x_n\) ,với \(x_i>-1\),i=1,n và các xi cùng dấu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Mình có ý tưởng vầy nè. Bạn phát triên nó xe sao
Điều kiện \(-1\le x\le1\)
Đặt \(\hept{\begin{cases}!x!=a\left(0\le a\le1\right)\\\sqrt{1-x^2}=b\left(0\le b\le1\right)\end{cases}\Rightarrow a^2+b^2=1}\)
\(BPT\Leftrightarrow2ab+\left(1-k\right)\left(a+b\right)+2-k\le0\)
\(\Leftrightarrow k\ge\frac{2ab+a+b+2}{a+b+1}\)
Vậy giờ bạn làm bài khác nè
Tìm GTNN của \(\frac{2ab+a+b+2}{a+b+1}\)
Với \(\hept{\begin{cases}\left(0\le a\le1\right)\\\left(0\le b\le1\right)\\a^2+b^2=1\end{cases}}\)
Ý tưởng của alibaba nguyễn gần đúng như ý tưởng của cô.
Nhưng thay vì đưa về hệ, cô đặt \(\left|x\right|+\sqrt{1-x^2}=t\) , khi đó \(1\le t\le\sqrt{2}\).
Sau đó rút k theo t ta được \(k\ge\frac{t^2+t+1}{t+1}=t+\frac{1}{t+1}\) với \(1\le t\le\sqrt{2}\).
Khi đó giá trị nhỏ nhất mà k cần đạt chính là GTLN của \(t+\frac{1}{t+1}\) với \(1\le t\le\sqrt{2}\).
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Kiểu như vầy nè
Đặt \(\hept{\begin{cases}\sqrt{x}=a\left(a\ge1\right)\\\sqrt{x-1}=b\left(b\ge0\right)\end{cases}\Rightarrow a^2-b^2=1\left(1\right)}\)
\(\Rightarrow a-b=m\Leftrightarrow a=m+b\)
Thế vô (1) ta được
\(\left(m+b\right)^2-b^2=1\)
\(\Leftrightarrow2bm-1+m^2=0\)
\(\Leftrightarrow b=\frac{1-m^2}{2m}\)
\(\Rightarrow a=\frac{m^2+1}{2m}\)
Kết hợp với điều kiện thì ta được
\(\hept{\begin{cases}\frac{m^2+1}{2m}\ge1\\\frac{1-m^2}{2m}\ge0\end{cases}}\)
Ý mình là vầy nè
Thử đặt ẩn phụ rồi đưa về pt bậc 2 thử bảo ngọc. Biết đâu đạt được bí kiếp :)
![](https://rs.olm.vn/images/avt/0.png?1311)
Đk:\(-\sqrt{10}\le x\le\sqrt{10}\)
\(\left(x+3\right)\sqrt{10-x^2}=x^2-x-12\)
\(\Leftrightarrow\left(x+3\right)\sqrt{10-x^2}=\left(x+3\right)\left(x-4\right)\)
\(\Leftrightarrow\left(x+3\right)\sqrt{10-x^2}-\left(x+3\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left[\sqrt{10-x^2}-\left(x-4\right)\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+3=0\\\sqrt{10-x^2}-\left(x-4\right)=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-3\\\sqrt{10-x^2}=x-4\left(\text{*}\right)\end{cases}}\)
Đk(*):\(x\ge4\). Bình phương 2 vế ta có:
\(10-x^2=x^2-8x+16\)
\(\Leftrightarrow x^2-4x+3=0\)
\(\Delta=\left(-4\right)^2-4\cdot1\cdot3=4\)
\(\Leftrightarrow x_{1,2}=\frac{4\pm\sqrt{4}}{2}\) \(\Rightarrow\orbr{\begin{cases}x_1=1\\x_2=3\end{cases}}\) (loại vì \(x\ge4\))
Vậy....
Với i = 1 thì
\(1+x_1\ge1+x_1\) (đúng)
Giả sử bất đẳng thức đúng đến i = k thì ta có
\(\left(1+x_1\right)\left(1+x_2\right)...\left(1+x_k\right)\ge1+x_1+x_2+...+x_k\)
Đặt \(1+x_1+x_2+...+x_k=y\)
\(\Rightarrow x_1+x_2+...+x_k=y-1\)
\(\Rightarrow y-1\)cùng dấu với xn
Ta chứng minh bất đẳng thức đúng với \(i=k+1\)
Ta có
\(\left(1+x_1\right)\left(1+x_2\right)...\left(1+x_k\right)\left(1+x_{k+1}\right)\ge\left(1+x_1+x_2+...+x_k\right)\left(1+x_{k+1}\right)\)
Ta chứng minh
\(\left(1+x_1+x_2+...+x_k\right)\left(1+x_{k+1}\right)\ge1+x_1+x_2+...+x_k+x_{k+1}\)
\(\Leftrightarrow y\left(1+x_{k+1}\right)\ge y+x_{k+1}\)
\(\Leftrightarrow x_{k+1}\left(y-1\right)\ge0\)
Bất đẳng thức này đúng vì \(x_{k+1};\left(y-1\right)\)là hai số cùng dấu
\(\Rightarrow\)Bất đẳng thức đúng với i = k + 1
Vậy bất đẳng thức ban đầu là đúng (phương pháp quy nạp nhé bạn)