Bài 7. Cho đường thẳng xy và điểm 0 không thuộc xy, Trên xy lấy n điểm A,; Az;..., An Vẽ các tia gốc 0 lần lượt đi qua các điểm đó. Biết hình vẽ có tất cả 100 tia.
Hãy tính giá trị của n. Giúp mik
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\dfrac{1}{7}\) + \(\dfrac{1}{7^2}\) + \(\dfrac{1}{7^3}\) + ... + \(\dfrac{1}{7^{100}}\)
7A = 7 + \(\dfrac{1}{7}\) + \(\dfrac{1}{7^2}\) + ....+ \(\dfrac{1}{7^{100}}\)
7A - A = (7 + \(\dfrac{1}{7}\) + \(\dfrac{1}{7^2}\) +... + \(\dfrac{1}{7^{99}}\)) - (\(\dfrac{1}{7}\) + \(\dfrac{1}{7^2}\) + \(\dfrac{1}{7^3}\) + ... + \(\dfrac{1}{7^{100}}\))
6A = 7 + \(\dfrac{1}{7}\) + \(\dfrac{1}{7^2}\) + ... + \(\dfrac{1}{7^{99}}\) - \(\dfrac{1}{7}\) - \(\dfrac{1}{7^2}\) - \(\dfrac{1}{7^3}\) - ... - \(\dfrac{1}{7^{100}}\)
6A = (\(\dfrac{1}{7}\) - \(\dfrac{1}{7}\)) + (\(\dfrac{1}{7^2}\) - \(\dfrac{1}{7^2}\)) + (\(\dfrac{1}{7^3}\) - \(\dfrac{1}{7^3}\)) +...+(\(\dfrac{1}{7^{99}}\) - \(\dfrac{1}{7^{99}}\))+ (7 - \(\dfrac{1}{7^{100}}\))
6A = 0 + 0 + ... + 0 + 7 - \(\dfrac{1}{7^{100}}\)
6A = 7 - \(\dfrac{1}{7^{100}}\)
A = (7 - \(\dfrac{1}{7^{100}}\)) : 6
A = \(\dfrac{7}{6}\) - \(\dfrac{1}{6.7^{100}}\)
G = \(\dfrac{3}{5}\) + \(\dfrac{3}{5^4}\) + \(\dfrac{3}{5^7}\) + ... + \(\dfrac{3}{5^{100}}\)
53G = 75 + \(\dfrac{3}{5}\) + \(\dfrac{3}{5^4}\) +... + \(\dfrac{3}{5^{99}}\)
125G - G = (75 + \(\dfrac{3}{5}\) + \(\dfrac{3}{5^4}\) + \(\dfrac{3}{5^7}\) + ... + \(\dfrac{3}{5^{99}}\)) - (\(\dfrac{3}{5}\) + \(\dfrac{3}{5^4}\)+\(\dfrac{3}{5^7}\)+...+\(\dfrac{3}{5^{100}}\))
124G = 75 + \(\dfrac{3}{5}\) + \(\dfrac{3}{5^4}\) + \(\dfrac{3}{5^7}\)+...+ \(\dfrac{3}{5^{99}}\) - \(\dfrac{3}{5}\) - \(\dfrac{3}{5^4}\) - \(\dfrac{3}{5^7}\) - ... - \(\dfrac{3}{5^{100}}\)
124G = (75 - \(\dfrac{3}{5^{100}}\)) + (\(\dfrac{3}{5}\) - \(\dfrac{3}{5}\)) +(\(\dfrac{3}{5^4}\) - \(\dfrac{3}{5^4}\)) +...+ (\(\dfrac{3}{5^{99}}\) - \(\dfrac{3}{5^{99}}\))
124G = 75 - \(\dfrac{3}{5^{100}}\) + 0 + 0 + ... + 0
124G = 75 - \(\dfrac{3}{5^{100}}\)
G = (75 - \(\dfrac{3}{5^{100}}\)): 124
G = \(\dfrac{75}{124}\) - \(\dfrac{3}{124.5^{100}}\)
Lời giải:
\(2022A=\frac{2022^{2024}+2022}{2022^{2024}+1}=1+\frac{2021}{2022^{2024}+1}< 1+\frac{2021}{2022^{2023}+1}=\frac{2022^{2023}+2022}{2022^{2023}+1}=2022B\)
$\Rightarrow A< B$
Lời giải:
$x+(x+1)+(x+2)+....+(x+30)=1240$
$\underbrace{(x+x+x+...+x)}_{31}+(1+2+3+....+30)=1240$
$31\times x+30\times 31:2=1240$
$31\times x+465=1240$
$31\times x=775$
$x=775:31=25$
a:
ĐKXĐ: x<>3
\(\dfrac{x-3}{2}=\dfrac{72}{x-3}\)
=>\(\left(x-3\right)^2=72\cdot2=144\)
=>\(\left[{}\begin{matrix}x-3=12\\x-3=-12\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=15\left(nhận\right)\\x=-9\left(nhận\right)\end{matrix}\right.\)
b: \(\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}\right)\cdot x=\dfrac{1}{49}+\dfrac{2}{48}+...+\dfrac{48}{2}+\dfrac{49}{1}\)
=>\(x\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}\right)=\left(\dfrac{1}{49}+1\right)+\left(\dfrac{2}{48}+1\right)+...+\left(\dfrac{48}{2}+1\right)+1\)
=>\(x\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}\right)=\dfrac{50}{49}+\dfrac{50}{48}+...+\dfrac{50}{2}+\dfrac{50}{50}\)
=>\(x\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}\right)=50\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}\right)\)
=>x=50
\(C=\dfrac{1}{99\cdot97}-\dfrac{1}{97\cdot95}-...-\dfrac{1}{5\cdot3}-\dfrac{1}{3\cdot1}\)
\(=\dfrac{1}{99\cdot97}-\left(\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+...+\dfrac{1}{95\cdot97}\right)\)
\(=\dfrac{1}{97\cdot99}-\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{95\cdot97}\right)\)
\(=\dfrac{1}{97\cdot99}-\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{95}-\dfrac{1}{97}\right)\)
\(=\dfrac{1}{97\cdot99}-\dfrac{1}{2}\left(1-\dfrac{1}{97}\right)=\dfrac{1}{97\cdot99}-\dfrac{48}{97}\)
\(=\dfrac{1-48\cdot99}{97\cdot99}=\dfrac{-4751}{9603}\)
Lời giải:
40 quyển sách khoa học tự nhiên cho mượn ứng với số phần sách khoa học xã hội là:
$\frac{4}{5}-\frac{4}{15}=\frac{8}{15}$
Số sách khoa học xã hội là: $40: \frac{8}{15}=75$ (quyển)
Số sách khoa học tự nhiên ban đầu: $75\times 4:5=60$ (quyển)
Phân số chỉ số trứng bà bán lần dầu tiên là :
1 - 2/5 = 3/5 ( số trứng )
Phân số chỉ số trứng bà bán lần thứ hai là :
3/5 x 2/3 = 6/15 ( số trứng )
Phân số chỉ số trứng bà bán sau hai lần là :
2/5 + 6/15 = 12/15 ( số trứng )
Phân số chỉ số trứng còn lại là :
1 - 12/15 = 3/15 ( số trứng )
Số trứng ban đầu bafddem đi bán là :
10 : 3/15 = 50 ( quả )
Đáp số : 50 quả trứng .
\(B=\dfrac{-1}{20}+\dfrac{-1}{30}+...+\dfrac{-1}{132}\)
\(=-\left(\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+...+\dfrac{1}{11\cdot12}\right)\)
\(=-\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{11}-\dfrac{1}{12}\right)\)
\(=-\left(\dfrac{1}{4}-\dfrac{1}{12}\right)=-\left(\dfrac{3}{12}-\dfrac{1}{12}\right)=-\dfrac{2}{12}=-\dfrac{1}{6}\)