K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2017

Ta có: \(x=\sqrt{\frac{\sqrt{3}-x}{\sqrt{3}+x}}\)

\(x^2=\frac{\sqrt{3}-x}{\sqrt{3}+x}\)

\(x^2\left(\sqrt{3}+x\right)=\sqrt{3}-x\)

\(x^3+x^2\sqrt{3}+x-\sqrt{3}=0\)

(Bạn tự nhẩm nghiệm nha, mk quên cách nhậm nghiệm hộ mình)

23 tháng 11 2017

\(\Leftrightarrow\hept{\begin{cases}x\left(x+1\right)+y\left(y+1\right)=8\\x\left(x+1\right)y\left(y+1\right)=12\end{cases}}\)

đặt a=x(x+1);b=y(y+1)

\(\Leftrightarrow\hept{\begin{cases}a+b=8\\ab=12\end{cases}}\)

23 tháng 11 2017

bài này dễ mà bạn

\(\hept{\begin{cases}x+y+x^2+y^2=8\\x\left(x+1\right)y\left(y+1\right)=12\end{cases}}\)

suy ra \(\hept{\begin{cases}x\left(x+1\right)+y\left(y+1\right)=8\\x\left(x+1\right)y\left(y+1\right)=12\end{cases}}\)

sau đó bạn Đặt a=x(x+1); b=y(y+1)

phương trình trở thành\(\hept{\begin{cases}a+b=8\\ab=12\end{cases}}\)

dễ dàng giải dc a=6 ; b=2 nha

ra a va b rồi bạn tự tìm x và y nha

nhớ k đúng nha

23 tháng 11 2017

\(\Leftrightarrow\hept{\begin{cases}x^3-y^3-3x+3y=0\\x^6+y^6=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(x-y\right)\left(x^2+xy+y^2\right)-3\left(x-y\right)=0\\x^6+y^6=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(x-y\right)\left(x^2+xy+y^2-3\right)=0\\x^6+y^6=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x-y=0\\x^2+xy+y^2-3=0\\x^6+y^6=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=y\\y^2+y.y+y^2-3=0\\y^6+y^6=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=1\\y=1\\y\approx0,71\end{cases}}\)

23 tháng 11 2017
Hướng dẫn: x=a-b y=b-c z=c-a
26 tháng 3 2018

a) Do C thuộc nửa đường tròn nên \(\widehat{ACB}=90^o\) hay AC vuông góc MB.

Xét tam giác vuông AMB có đường cao AC nên áp dụng hệ thức lượng ta có:

\(BC.BM=AB^2=4R^2\)

b) Xét tam giác MAC vuông tại C có CI là trung tuyến ứng với cạnh huyền nên IM = IC = IA

Vậy thì \(\Delta ICO=\Delta IAO\left(c-c-c\right)\)

\(\Rightarrow\widehat{ICO}=\widehat{IAO}=90^o\)

Hay IC là tiếp tuyến tại C của nửa đường tròn.

c) Xét tam giác vuông AMB có đường cao AC, áp dụng hệ thức lượng ta có:

\(MB.MC=MA^2=4IC^2\Rightarrow IC^2=\frac{1}{4}MB.MC\)

Xét tam giác AMB có I là trung điểm AM, O là trung điểm AB nên IO là đường trung bình tam giác ABM.

Vậy thì \(MB=2OI\Rightarrow MB^2=4OI^2\)   (1) 

Xét tam giác vuông MAB, theo Pi-ta-go ta có:

\(MB^2=MA^2+AB^2=MA^2+4R^2\)   (2)

Từ (1) và (2) suy ra \(4OI^2=MA^2+4R^2.\)

d) Do IA, IC là các tiếp tuyến cắt nhau nên ta có ngay \(AC\perp IO\Rightarrow\widehat{CDO}=90^o\)

Tương tự \(\widehat{CEO}=90^o\)

Xét tứ giác CDOE có \(\widehat{CEO}=\widehat{CDO}=90^o\)mà đỉnh E và D đối nhau nên tứ giác CDOE nội tiếp đường tròn đường kính CO.

Xét tứ giác CDHO có: \(\widehat{CHO}=\widehat{CDO}=90^o\) mà đỉnh H và D kề nhau nên CDHO nội tiếp đường tròn đường kính CO.

Vậy nên C, D, H , O, E cùng thuộc đường tròn đường kính CO.

Nói cách khác, O luôn thuộc đường tròn ngoại tiếp tam giác HDE.

Vậy  đường tròn ngoại tiếp tam giác HDE luôn đi qua điểm O cố định.

23 tháng 11 2017

krfykof67777777777777777777777777777777

23 tháng 11 2017

???????????????????/