Chứng minh
\(\frac{xy+yz+zx}{2}\ge\frac{3\sqrt[3]{x^2y^2z^2}}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nhầm đầu bài chút rồi phải là tia phân giác của góc HAC cắt BC tại M
a) xét tam giác MHA và tam giác MNA có
MHA=MNA(=90 độ)
MA chung
HAM=NAM( AM là phân giác của HAC)\=> tam giác MHA= tam giác MNA(ch-gnh)
=> AH=AN(hai cạnh tương ứng)
b) vì tam giác ABH vuông tại H=> ABH+HAB= 90 độ=> HAB=30 độ (ABH= 60 độ)
vì AM là phân giác của HAC=> HAM=MAC=BAC-BAH/2=90-30/2=30 độ
xét tam giác ABH và tam gáic MAH có
AH chung
AHB=AHM(=90 độ)
BAH=MAH(=30 độ)
=> tam giác ABH= tam gáic MAH(gcg)
=> AM=AB( hai cạnh tương ứng)
c) vì AM=AB=> tam giác ABM cân A mà ABM= 60 độ=> tam giác ABM đều => AM=MB=AB
d) vì tam giác ABC vuông tại A=> B+C=90 độ=> C=30 độ
=> C=MAN=30 độ
=> tam giác AMC cân M=> AM=MC=MB mà MB+MC=BC=> AM=1/2BC
Với A là một tập con của tập hợp {1;2;...;2014} thỏa mãn yêu cầu đề bài toán, gọi a là phần tử nhỏ nhất của A
Xét \(b\in A,b\ne a\) ta có b>a và \(\frac{a^2}{b-a}\ge a\Rightarrow b\le2a\)(1)
Gọi c,d là phần tử lớn nhất trong A, c<d từ (1) ta có: \(d\le2a\le2c\left(2\right)\)
Theo giả thiết \(\frac{c^2}{d-c}\in A\). Mặt khác do (2) nên \(\frac{c^2}{d-c}\ge\frac{c^2}{2c-c}\ge c\Rightarrow\frac{c^2}{d-c}\in\left\{c;d\right\}\)
Xét các trường hợp sau:
Do đó: A={a;2} với a=1;2;...;1007. Các tập hợp trên đều thỏa mãn yêu cầu đề bài
Vậy có tất cả 1007 tập hợp thỏa mãn
a) Gọi K là giao của MN và CD
Ta có: \(\widehat{BMN}=\widehat{MTD}\)(so le trong và MN//AP) và \(\widehat{MTD}=\widehat{APD}\) (đồng vị và MN//AP)
\(\Rightarrow\widehat{BMN}=\widehat{APD}\)
Xét \(\Delta BMN\)và \(\Delta DPA\)có:
\(\hept{\begin{cases}\widehat{MBN}=\widehat{PDA}\left(=90^o\right)\\\widehat{BMN}=\widehat{APD}\left(cmt\right)\end{cases}}\)
=> \(\Delta BMN~\Delta DPA\left(g.g\right)\Rightarrow\frac{BM}{DP}=\frac{BN}{DA}\Rightarrow\frac{BM}{BN}=\frac{DP}{DA}\)
Mà \(BM=\frac{AB}{2},DA=BD\sin\widehat{ABD}=\frac{\sqrt{2}BD}{2}=\sqrt{2}OB\)
Do đó: \(\frac{\frac{\sqrt{2}OD}{2}}{BN}=\frac{DP}{\sqrt{2}OB}\Rightarrow\frac{OD}{BN}=\frac{DP}{OB}\)
Xét \(\Delta DOP\)và \(\Delta BNO\)có: \(\hept{\begin{cases}\widehat{ODP}=\widehat{NBO}\left(=45^o\right)\\\frac{OD}{BN}=\frac{DP}{OB}\end{cases}\Rightarrow\Delta DOP~\Delta BNO\left(c.g.c\right)\Rightarrow\widehat{DOP}=\widehat{BNO}}\)
Mà \(\widehat{DON}=\widehat{BNO}+\widehat{OBN}=\widehat{BNO}+45^o\)
Và \(\widehat{DON}=\widehat{DOP}+\widehat{NOP}\)
Do vậy \(\widehat{NOP}=45^o\)
2. Ta có \(\frac{OP}{ON}=\frac{OD}{BN}\left(\Delta DOP~\Delta BNO\right)\)
Nên \(\frac{OP}{ON}=\frac{OB}{BN}\Rightarrow\frac{OP}{OB}=\frac{ON}{BN}\)
Xét \(\Delta OPN\)và \(\Delta BQN\)có: \(\hept{\begin{cases}\widehat{PON}=\widehat{OBN}\left(=45^o\right)\\\frac{OP}{OB}=\frac{ON}{BN}\end{cases}\Rightarrow\Delta OPN~\Delta BON\left(c.g.c\right)\Rightarrow\widehat{OPN}=\widehat{BON}}\)
Gọi I là tâm đường tròn ngoại tiếp tam giác NOP
Ta có \(\widehat{ION}=\frac{180^o-\widehat{OIN}}{2}=90^o-\widehat{OPN}=\widehat{BOC}-\widehat{BON}=\widehat{CON}\)
=> 2 tia OI,OC trùng nhau
Vậy I thuộc OC
Sửa đề : \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{1}{8}\)
\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{1}{8}\)
\(1-\frac{1}{x+1}=\frac{1}{8}\)
\(\frac{1}{x+1}=\frac{7}{8}\Leftrightarrow8=7x+7\Leftrightarrow x=\frac{1}{7}\)
\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\ge0\)
Đặt \(\left(x;y;z\right)\rightarrow\left(a^3;b^3;c^3\right)\)
Ta chứng minh:\(a^3b^3+b^3c^3+c^3a^3\ge3a^2b^2c^2\)
\(\Leftrightarrow\left(ab\right)^3+\left(bc\right)^3+\left(ca\right)^3-3ab.bc.ca\ge0\)
Theo bổ đề trên ta có đpcm