K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2018

\(a,2x+4y=2\left(x+2y\right)\)

\(b,x^2+2xy+y^2-1\)

\(=\left(x+y\right)^2-1\)

\(=\left(x+y-1\right)\left(x+y+1\right)\)

18 tháng 12 2018

\(x^2+y^2-xy-2x-2y+9=x^2+y^2+2xy-2x-2y+9-3xy\)

\(=\left(x+y\right)^2-2\left(x+y\right)+9-3xy=\left(x+y-2\right)\left(x+y\right)+9-3xy.\)

\(đếnđâytịt\)

c, =3 dễ

\(\frac{3x^2-6x+9}{x^2-2x+3}=\frac{3\left(x^2-2x+3\right)}{x^2-2x+3}=3\)

18 tháng 12 2018

Câu b bạn không làm à? Làm hộ mình với! Còn câu a thì còn -3xy thì?

18 tháng 12 2018

ko tính đc đâu em ơi lớn quá, xem lại đề bài xem

18 tháng 12 2018

Bài gì vạii

18 tháng 12 2018

bài nào vậy bạn

nếu ko có thì

lần sau ko đăng câu hỏi linh tinh nha bạn

^_^

18 tháng 12 2018

Do \(x\ge2\),đặt \(x=2+m\left(m\ge0\right)\)

Ta có: \(S=5x^2-2x=5\left(2+m\right)^2-2\left(2+m\right)\)

\(=\left(2+m\right)\left[5\left(2+m\right)-2\right]\)

\(=\left(2+m\right)\left[10+5m-2\right]\)

\(\ge2\left(10-2\right)=16\) (do \(m\ge0\))

Dấu "=" xảy ra khi \(m=0\Leftrightarrow x=2\)

Vậy \(S_{min}=16\Leftrightarrow x=2\)

18 tháng 12 2018

\(A=5x^2-2x=5\left(x^2-\frac{2}{5}x+\frac{1}{25}\right)-\frac{1}{5}\)

\(=5\left(x-\frac{1}{5}\right)^2-\frac{1}{5}\ge-\frac{1}{5}\forall x\)

Dấu "=" xảy ra khi \(\left(x-\frac{1}{5}\right)^2=0\Leftrightarrow x=\frac{1}{5}\)

Vậy \(A_{min}=-\frac{1}{5}\Leftrightarrow x=\frac{1}{5}\)

18 tháng 12 2018

\(49-x^2+6x-9\)

\(=7^2-\left(x^2+2.x.3+3^2\right)\)

\(=7^2-\left(x+3\right)^2\)

\(=\left(7-x-3\right)\left(7+x+3\right)\)

\(=\left(4-x\right)\left(10+x\right)\)