cho một số có 2 chữ số cùng lúc ta viết thêm chữ số 1 vào bên trái và bên phải số đó ta được số mới có 4 chữ số. số có 4 chữ số này gấp 23 lần số đã cho. tìm số đã cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(3\left(x-3\right)-5\left(-x+1\right)=x+6\)
\(\Leftrightarrow3x-9+5x-5-x-6=0\)
\(\Leftrightarrow7x=20\)
\(\Rightarrow x=\frac{20}{7}\)
b) \(\left|4x-2\right|=8\Leftrightarrow\orbr{\begin{cases}4x-2=8\\4x-2=-8\end{cases}}\Leftrightarrow\orbr{\begin{cases}4x=10\\4x=-6\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-\frac{3}{2}\end{cases}}\)
c) \(-3\left|6x+1\right|=-12\)
\(\Leftrightarrow\left|6x+1\right|=4\Leftrightarrow\orbr{\begin{cases}6x+1=4\\6x+1=-4\end{cases}}\Leftrightarrow\orbr{\begin{cases}6x=3\\6x=-5\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{5}{6}\end{cases}}\)
Bài giải
a, \(3\left(x-3\right)-5\left(-x+1\right)=x+6\)
\(3x-9+5x-5-x-6=0\)
\(7x-20=0\)
\(7x=20\)
\(x=\frac{20}{7}\)
b, \(\left|4x-2\right|=8\)
\(4x-2=\pm8\)
\(\Rightarrow\orbr{\begin{cases}4x-2=-8\\4x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}4x=-6\\4x=2\end{cases}}\Rightarrow\orbr{\begin{cases}x=-3\\x=2\end{cases}}\)
Vậy \(x\in\left\{-3\text{ ; }2\right\}\)
c, \(-3\left|6x+1\right|=-12\)
\(\left|6x+1\right|=4\)
\(6x+1=\pm4\)
\(\Rightarrow\orbr{\begin{cases}6x+1=-4\\6x+1=4\end{cases}}\Rightarrow\orbr{\begin{cases}6x=-5\\6x=3\end{cases}}\Rightarrow\orbr{\begin{cases}x=-\frac{5}{6}\\x=\frac{1}{2}\end{cases}}\)
\(\Rightarrow\text{ }x\in\left\{-\frac{5}{6}\text{ ; }\frac{1}{2}\right\}\)
\(a\cdot b=a:b\)
\(b\cdot b=a:a\)
\(b^2=1\)
\(b=\pm\sqrt{1}\)
\(b=\pm1\)
\(\orbr{\begin{cases}b=1\\b=-1\end{cases}}\)
TH 1 :
\(b=1\)
\(4\left(a-b\right)=a\cdot b\)
\(4\left(a-1\right)=a\cdot1\)
\(4a-4=a\)
\(3a=4\)
\(a=\frac{4}{3}\)
TH 2 :
\(b=-1\)
\(4\left(a-b\right)=a\cdot b\)
\(4\left(a-\left(-1\right)\right)=a\cdot\left(-1\right)\)
\(4\left(a+1\right)=-a\)
\(4a+4=-a\)
\(5a=-4\)
\(a=\frac{-4}{5}\)
Vậy \(\hept{\begin{cases}a=\frac{4}{3}\\b=1\end{cases}}\) hoặc \(\hept{\begin{cases}a=\frac{-4}{5}\\b=-1\end{cases}}\)
Bài giải
\(4\left(a-b\right)=ab=\frac{a}{b}\)
\(4a-4b=ab=\frac{a}{b}\)
Vì \(ab=\frac{a}{b}\text{ }\Rightarrow\text{ }ab^2=a\text{ }\Rightarrow\text{ }b^2=1\text{ }\Rightarrow\text{ }b=\pm1\)
TH 1 ; Với a = - 1 thì :
\(\Rightarrow\text{ }-4-4b=-b\text{ }\Rightarrow\text{ }-4=3b\text{ }\Rightarrow\text{ }b=-\frac{4}{3}\)
TH 2 : Với a = 1 thì :
\(\Rightarrow\text{ }4-4b=b\text{ }\Rightarrow\text{ }4=5b\text{ }\Rightarrow\text{ }b=\frac{4}{5}\)
Vậy ...
\(^{\left(2x+1\right)^2-\left(x+2\right)^2-3x\left(x+2\right)=\left(2x+1\right)^2-\left(x+2\right)\left(x+2+3x\right)}\)
\(=\left(2x+1\right)^2-\left(x+2\right)\left(4x+2\right)=\left(2x+1\right)^2-2\left(x+2\right)\left(2x+1\right)\)
\(=\left(2x+1\right)\left(1-2x-4\right)=\left(2x+1\right)\left(-3-2x\right)=-\left(2x+1\right)\left(3+2x\right)\)
\(\left(2x+1\right)^2-\left(x+2\right)^2-3x\left(x+2\right)\)
\(=4x^2+4x+1-\left(x^2+4x+4\right)-3x^2-6x\)
\(=4x^2+4x+1-x^2-4x-4-3x^2-6x\)
\(=-6x-3\)
\(=-3\left(x+2\right)\)
Đoạn 1 (Từ đầu … đến “đặt đâu thì nằm đấy”): Sự ra đời kì lạ của Gióng.
- Đoạn 2 (Tiếp theo … đến “giết giặc, cứu nước”): Gióng gặp sứ giả và sự lớn nhanh kì lạ của Gióng.
- Đoạn 3 (Tiếp theo … đến “từ từ bay lên trời”): Gióng cùng nhân dân chiến đấu và chiến thắng giặc Ân.
- Đoạn 4 (Còn lại): Gióng bay về trời
Ta có: \(\left(x-2\right)^{2x}+3=\left(x-2\right)^{2x}+1\)
\(\Leftrightarrow\left(x-2\right)^{2x}-\left(x-2\right)^{2x}=1-3\)
\(\Leftrightarrow0=-2\)
=> vô lý
PT vô nghiệm
\(\hept{\begin{cases}\frac{4x}{5}=\frac{3y}{2}\\\frac{4y}{5}=\frac{5z}{3}\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{\frac{5}{4}}=\frac{y}{\frac{2}{3}}\\\frac{y}{\frac{5}{4}}=\frac{z}{\frac{3}{5}}\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{\frac{5}{4}}\times\frac{1}{\frac{3}{2}}=\frac{y}{\frac{2}{3}}\times\frac{1}{\frac{3}{2}}\\\frac{y}{\frac{5}{4}}\times\frac{1}{\frac{4}{5}}=\frac{z}{\frac{3}{5}}\times\frac{1}{\frac{4}{5}}\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{\frac{15}{8}}=\frac{y}{1}\\\frac{y}{1}=\frac{z}{\frac{12}{25}}\end{cases}}\Rightarrow\frac{x}{\frac{15}{8}}=\frac{y}{1}=\frac{z}{\frac{12}{25}}\)
2x - 3y + 4z = 5, 34
=> \(\frac{2x}{\frac{15}{4}}=\frac{3y}{3}=\frac{4z}{\frac{48}{25}}\)và 2x - 3y + 4z = 5, 34
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{\frac{15}{4}}=\frac{3y}{3}=\frac{4z}{\frac{48}{25}}=\frac{2x-3y+4z}{\frac{15}{4}-3+\frac{48}{25}}=\frac{5,34}{\frac{267}{100}}=2\)
\(\Rightarrow\hept{\begin{cases}x=2\cdot\frac{15}{8}=\frac{15}{4}\\y=2\cdot1=2\\z=2\cdot\frac{12}{25}=\frac{24}{25}\end{cases}}\)
Vậy ...
b) \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)và 2x + 3y - z = 50
=> \(\frac{2\left(x-1\right)}{4}=\frac{3\left(y-2\right)}{9}=\frac{z-3}{4}\)
=> \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)và 2x + 3y - z = 50
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(...=\frac{2x-2+3y-6-\left(z-3\right)}{4+9-4}=\frac{2x-2+3y-6-z+3}{9}=\frac{50-2-6+3}{9}=\frac{45}{9}=5\)
\(\frac{x-1}{2}=5\Rightarrow x-1=10\Rightarrow x=11\)
\(\frac{y-2}{3}=5\Rightarrow y-2=15\Rightarrow y=17\)
\(\frac{z-3}{4}=5\Rightarrow z-3=20\Rightarrow z=23\)
Vậy ...
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=kb\\c=kd\end{cases}}\)
a) \(\frac{a+c}{b+d}=\frac{kb+kd}{b+d}=\frac{k\left(b+d\right)}{b+d}=k\)(1)
\(\frac{a-c}{b-d}=\frac{kb-kd}{b-d}=\frac{k\left(b-d\right)}{b-d}=k\)(2)
Từ (1) và (2) => đpcm
b) \(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{\left(kb+b\right)^2}{\left(kd+d\right)^2}=\frac{\left[b\left(k+1\right)\right]^2}{\left[d\left(k+1\right)\right]^2}=\frac{b^2\left(k+1\right)^2}{d^2\left(k+1\right)^2}=\frac{b^2}{d^2}\)(1)
\(\frac{ab}{cd}=\frac{kb\cdot b}{kd\cdot d}=\frac{kb^2}{kd^2}=\frac{b^2}{d^2}\)(2)
Từ (1) và (2) => đpcm
c) \(\left(\frac{a+b}{c+d}\right)^2=\left(\frac{kb+b}{kd+d}\right)^2=\left(\frac{b\left(k+1\right)}{d\left(k+1\right)}\right)^2=\left(\frac{b}{d}\right)^2=\frac{b^2}{d^2}\)(1)
\(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(kb\right)^2+b^2}{\left(kd\right)^2+d^2}=\frac{k^2b^2+b^2}{k^2d^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{b^2}{d^2}\)(2)
Từ (1) và (2) => đpcm
Ta có: \(X=\sqrt{6-3\sqrt{2+\sqrt{3}}}-\sqrt{2+\sqrt{2+\sqrt{3}}}\)
<=> \(X^2=6-3\sqrt{2+\sqrt{3}}+2+\sqrt{2+\sqrt{3}}-2\sqrt{3}.\sqrt{4-\left(2+\sqrt{3}\right)}\)
<= \(X^2=8-2\sqrt{2+\sqrt{3}}-2\sqrt{3}.\sqrt{2-\sqrt{3}}\)
<=> \(X^2=8-\sqrt{2}\left(\sqrt{3}+1\right)-\sqrt{6}\left(\sqrt{3}-1\right)\)
<=> \(X^2=8-4\sqrt{2}\)
<=> \(X^2-8=-4\sqrt{2}\)
=> \(X^4-16X+64=32\)
<=> \(X^4-16X^2+32=0\)
Vậy X là nghiệm phương trình \(X^4-16X^2+32=0\)
\(\text{Gọi số lúc đầu là }\overline{ab},\text{ta có: }\)
\(\Rightarrow\overline{1ab1}=23\overline{ab}\)
\(\Rightarrow1001+\overline{ab0}=23\overline{ab}\)
\(\Rightarrow1001=23\overline{ab}-\overline{ab}\text{ x }10\)
\(\Rightarrow1001=13\overline{ab}\)
\(\Rightarrow\overline{ab}=77\)
\(\text{Vậy số cần tìm là 77.}\)
gọi số cần tìm là ab
theo đề bài 1ab1=23xab => 1001+10xab=23xab => 1001=13xab => ab=1001:13=77