Cho đường tròn tâm (O, 13cm) và điểm M cách O một khoảng là 5cm. Tìm số dây đi qua điểm M và có độ dài là một số tự nhiên.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(d) cắt trục Ox nên ta có phương trình hoành độ:
(k - 1)\(x\) - 4 = 0 (k ≠ 1)
(k - 1)\(x\) = 4
\(x\) = \(\dfrac{4}{k-1}\)
Theo bài ra ta có:
\(\dfrac{4}{k-1}\) ≤ 1
\(\dfrac{4}{k-1}\) - 1 ≤ 0
\(\dfrac{4-k+1}{k-1}\) ≤ 0
\(\dfrac{5-k}{k-1}\) ≤ 0
A = \(\dfrac{5-k}{k-1}\) ≤ 0
lập bảng xét dấu ta có:
k | 1 5 |
5 - k | + + 0 - |
k - 1 | - 0 + + |
A = \(\dfrac{5-k}{k-1}\) | - || + 0 - |
Theo bảng trên ta có: k < 1 hoặc k ≥ 5
(d) cắt Ox nên ta có phương trình hoành độ:
(k - 1)\(x\) - 4 = 0
(k - 1)\(x\) = 4
\(x\) = \(\dfrac{4}{k-1}\) (k ≠ 1)
Theo bài ra ta có:
\(\dfrac{4}{k-1}\) ≤ 1
⇒ \(\dfrac{4}{k-1}\) - 1 ≤ 0
\(\dfrac{4-k-1}{k-1}\) ≤ 0
\(\dfrac{5-k}{k-1}\) ≤ 0
A = \(\dfrac{5-k}{k-1}\) ≤ 0
Lập bảng ta có:
k | 1 5 |
5 - k | + + 0 - |
k - 1 | - 0 + + |
\(\dfrac{5-k}{k-1}\) | - || + 0 - |
Theo bảng trên ta có: 1 < k hoặc k ≥ 5
Kl:...
Gọi tuổi An hiện nay là \(x\) (tuổi; \(x\) \(\in\) N*).
Khi tuổi cô Hoa gấp ba lần tuổi An hiện nay thì tuổi cô Hoa khi đó là:
3.\(x\) (tuổi)
Tuổi An khi đó là: 3\(x\) - 22 (tuổi)
Theo bài ra ta có phương trình:
3\(x\) = (3\(x\) - 22). 12
3\(x\) = 36\(x\) - 264
36\(x\) - 3\(x\) = 264
33\(x\) = 264
\(x\) = 264 : 33
\(x\) = 8
Tuổi An hiện nay là: 8 tuổi
Tuổi cô Hoa hiện nay là: 8 + 22 = 30 (tuổi)
Kết luận:...
Lời giải:
a. Ta có:
$\widehat{BNC}=\widehat{BMC}=90^0$ (góc nt chắn nửa đường tròn - cung BC)
$\Rightarrow BN\perp AC, CM\perp AB$
Tam giác $ABC$ có 2 đường cao $BN, CM$ cắt nhau tại $H$ nên $H$ là trực tâm của tam giác $ABC$.
b. Gọi $D$ là giao của $AH$ và $BC$. Do $H$ là trực tâm tam giác $ABC$ nên $AH\perp BC$ tại $D$.
Tam giác $BMC$ vuông tại $M$
$\Rightarrow$ trung tuyến $MO= \frac{BC}{2}=BO$ (đường trung tuyến ứng với cạnh huyền bằng 1/2 cạnh huyền)
$\Rightarrow BOM$ là tam giác cân tại $O$
$\Rightarrow \widehat{OMB}=\widehat{OBM}=90^0-\widehat{BCM}$
$=90^0-\widehat{DCH}=\widehat{MHA}=\widehat{MHE}(1)$
$CM\perp AB$ nên $AMH$ là tam giác vuông tại $M$
$\Rightarrow ME=\frac{AH}{2}=EH$ (đường trung tuyến ứng với cạnh huyền bằng 1/2 cạnh huyền)
$\Rightarrow MEH$ cân tại $E$
$\Rightarrow \widehat{MHE}=\widehat{EMH}(2)$
Từ $(1); (2)\Rightarrow \widehat{OMB}=\widehat{EMH}$
$\Rightarrow \widehat{OMB}+\widehat{OMC}=\widehat{EMH}+\widehat{OMC}$
$\Rightarrow \widehat{BMC}=\widehat{EMO}$
$\Rightarrow \widehat{EMO}=90^0$
$\Rightarrow EM\perp MO$ nên $EM$ là tiếp tuyến $(O)$
c.
Ta có:
$EM=\frac{AH}{2}=EN$
$OM=ON$
$\Rightarrow EO$ là trung trực của $MN$
Gọi $T$ là giao điểm $EO, MN$ thì $EO\perp MN$ tại $T$ và $T$ là trung điểm $MN$.
Xét tam giác $EMO$ vuông tại $M$ có $MT\perp EO$ thì:
$ME.MO = MT.EO = \frac{MN}{2}.EO$
$\Rightarrow 2ME.MO = MN.EO$
Dây dài nhất đi qua M là đường kính đi qua M của đường tròn.
Dây ngắn nhất đi qua M là dây đi qua M và vuông góc với OM tại M
Dộ dài dây dài nhất đi qua M là: 13 x 2 = 26 (cm)
Độ dài của dây ngắn nhất đi qua M là: CD = CM x 2
CD = 2x \(\sqrt{CO^2-OM^2}\)
CD = 2x\(\sqrt{13^2-5^2}\)
CD = 24 (cm)
Từ những lập luận trên ta có những dây đi qua M có độ dài là số tự nhiên là những dây có độ dài lần lượt là 24cm; 25cm; 26cm
Vậy có 3 dây đi qua M và có độ dài là số tự nhiên.