K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8

`(42 . 43 + 43 . 57 + 43) - 360 : 4 `

`= 43 . (42 + 57 + 1) - 90`

`= 43 . 100 - 90`

`= 4300 - 90 `

`= 4210`

`372 - 19 . 4 + (981:9-13)`

`= 372 - 76 + (109-13)`

`= 296 + 96`

`= 392`

9 tháng 8

Bài 1:

\(1,\left(y+3\right)^2\\ =y^2+2\cdot y\cdot3+3^2\\ =y^2+6y+9\\ 2,\left(x+3y\right)^2\\ =x^2+2\cdot x\cdot3y+\left(3y\right)^2\\ =x^2+6xy+9y^2\\ 3,\left(2x+3y\right)^2\\ =\left(2x\right)^2+3\cdot2x\cdot3y+\left(3y\right)^2\\ =4x^2+18xy+9y^2\\ 4,\left(4x^2+5y^4\right)\\ =\left(4x^2\right)^2+2\cdot4x^2\cdot5y^4+\left(5y^4\right)^2\\ =16x^4+40x^2y^4+25y^8\) 

9 tháng 8

Bài 2: 

\(1,\left(x-1\right)^2\\ =x^2-2\cdot x\cdot1+1^2\\ =x^2-2x+1\\ 2,\left(1-5a\right)^2\\ =1^2-2\cdot1\cdot5a+\left(5a\right)^2\\ =1-10a+25a^2\\ 3,\left(3x-1\right)^2\\ =\left(3x\right)^2-2\cdot3x\cdot1+1^2\\ =9x^2-6x+1\\ 4,-\left(\dfrac{1}{3}x-3y\right)^2\\ =-\left[\left(\dfrac{1}{3}x\right)^2-2\cdot\dfrac{1}{3}x\cdot3y+\left(3y\right)^2\right]\\ =-\left(\dfrac{1}{9}x^2-2xy+9y^2\right)\\ =-\dfrac{1}{9}x^2+2xy-9y^2\)

9 tháng 8

M là tập hợp các số tự nhiên lẻ không lớn hơn 11 

Cách 1: liệt kê

\(M=\left\{1;3;5;7;9;11\right\}\)

Cách 2: chỉ ra tính chất đặt trưng

`M={x=2k+1;k∈N;0<=k<=5}` 

Ta có: 13 không có trong tập hợp M 

`=>13∉M`

9 có trong tập hợp M 

`=>9∈M`

C2 sai rồi

9 tháng 8

 Gọi A, B, C lần lượt là các biến cố: "Khách hàng trả lời "sẽ sử dụng"."; "Khách hàng trả lời "có thể sẽ sử dụng"." và "Khách hàng trả lời "không sử dụng"." và X là biến cố: "Khách hàng sử dụng dịch vụ."

 Khi đó theo đề bài, ta có \(P\left(A\right)=\dfrac{17}{100};P\left(B\right)=\dfrac{48}{100};P\left(C\right)=\dfrac{35}{100};P\left(X|A\right)=0,4;P\left(X|B\right)=0,2;P\left(X|C\right)=0,01\)

 Theo công thức xác suất đầy đủ: 

\(P\left(X\right)=P\left(A\right)P\left(X|A\right)+P\left(B\right)P\left(X|B\right)+P\left(C\right)P\left(X|C\right)\)

\(=\dfrac{17}{100}.0,4+\dfrac{48}{100}.0,2+\dfrac{35}{100}.0,01=\dfrac{67}{400}=0,1675=16,75\%\)

Vậy tỉ lệ khách hàng sử dụng dịch vụ là \(16,75\%\)

NV
9 tháng 8

Gọi \(A_1\) là biến cố: "khách hàng được chọn thuộc nhóm trả lời sẽ sử dụng"

`A_2` là biến cố: "khách hàng được chọn thuộc nhóm trả lời có thể sẽ sử dụng"

`A_3` là biến cố: "khách hàng được chọn thuộc nhóm trả lời không sử dụng"

\(\Rightarrow P\left(A_1\right)=\dfrac{17}{100}\) ; \(P\left(A_2\right)=\dfrac{48}{100}\)\(P\left(A_3\right)=\dfrac{35}{100}\)

\(A_1;A_2;A_3\) tạo thành 1 nhóm biến cố đầy đủ

Gọi B là biến cố: "khách hàng đó sử dụng dịch vụ của công ty"

\(\Rightarrow P\left(B|A_1\right)=0,4\)\(P\left(B|A_2\right)=0,2\)\(P\left(B|A_3\right)=0,01\)

Theo công thức xác suất đầy đủ:

\(P\left(B\right)=0,4\times\dfrac{17}{100}+0,2\times\dfrac{48}{100}+0,01\times\dfrac{35}{100}=0,1675\)

 

NV
9 tháng 8

Gọi \(A_1\) là biến cố: "2 sản phẩm lấy nhầm từ lô 1 đều là sản phẩm tốt"

\(A_2\) là biến cố: "2 sản phẩm lấy nhầm từ lô 1 có 1 sản phẩm tốt 1 sản phẩm xấu"

`A_3` là biến cố: "2 sản phẩm lấy nhầm từ lô 1 đều là sản phẩm xấu"

\(\Rightarrow P\left(A_1\right)=\dfrac{C_6^2}{C_9^2}=\dfrac{5}{12}\)\(P\left(A_2\right)=\dfrac{C_6^1.C_3^1}{C_9^2}=\dfrac{1}{2}\)\(P\left(A_3\right)=\dfrac{C_3^2}{C_9^2}=\dfrac{1}{12}\)

\(A_1;A_2;A_3\) tạo thành 1 nhóm biến cố đầy đủ

Gọi B là biến cố: "sản phẩm cuối cùng lấy ra là sản phẩm tốt"

\(\Rightarrow P\left(B|A_1\right)=\dfrac{5+2}{7+2}=\dfrac{7}{9}\);

 \(P\left(B|A_2\right)=\dfrac{5+1}{7+2}=\dfrac{2}{3}\);

 \(P\left(B|A_3\right)=\dfrac{5}{7+2}=\dfrac{5}{9}\)

a.

\(P\left(B\right)=P\left(A_1\right).P\left(B|A_1\right)+P\left(A_2\right).P\left(B|A_2\right)+P\left(A_3\right).P\left(B|A_3\right)\)

\(=\dfrac{5}{12}.\dfrac{7}{9}+\dfrac{1}{2}.\dfrac{2}{3}+\dfrac{1}{12}.\dfrac{5}{9}=\dfrac{19}{27}\)

b.

Gọi `C_1` là biến cố "sản phẩm cuối cùng lấy ra thuộc lô 1"

`C_2` là biến cố: "sản phẩm cuối cùng lấy ra thuộc lô 2"

\(\Rightarrow P\left(C_1\right)=\dfrac{2}{9};P\left(C_2\right)=\dfrac{7}{9}\)

`C_1`, `C_2` cũng là nhóm biến cố đầy đủ

\(P\left(B|C_1\right)=\dfrac{6}{9}=\dfrac{2}{3}\)

\(\Rightarrow P\left(C_1|B\right)=\dfrac{P\left(B|C_1\right).P\left(C_1\right)}{P\left(B\right)}=\dfrac{\dfrac{2}{3}.\dfrac{2}{9}}{\dfrac{19}{27}}=\dfrac{4}{19}\)

c.

\(P\left(A_2|B\right)=\dfrac{P\left(B|A_2\right).P\left(A_2\right)}{P\left(B\right)}=\dfrac{\dfrac{2}{3}.\dfrac{1}{2}}{\dfrac{19}{27}}=\dfrac{9}{19}\)

DT
9 tháng 8

a) \(\dfrac{x+2004}{x+2005}+\dfrac{x+2005}{2006}< \dfrac{x+2006}{2007}+\dfrac{x+2007}{2008}\\ \Rightarrow\left(\dfrac{x+2004}{2005}-1\right)+\left(\dfrac{x+2005}{2006}-1\right)< \left(\dfrac{x+2006}{2007}-1\right)+\left(\dfrac{x+2007}{2008}-1\right)\\ \Rightarrow\dfrac{x-1}{2005}+\dfrac{x-1}{2006}< \dfrac{x-1}{2007}+\dfrac{x-1}{2008}\\ \Rightarrow\dfrac{x-1}{2005}+\dfrac{x-1}{2006}-\dfrac{x-1}{2007}-\dfrac{x-1}{2008}< 0\\ \)

\(\Rightarrow\left(x-1\right)\left(\dfrac{1}{2005}+\dfrac{1}{2006}-\dfrac{1}{2007}-\dfrac{1}{2008}\right)< 0\left(a\right)\)

Nhận thấy: \(\dfrac{1}{2005}>\dfrac{1}{2007},\dfrac{1}{2006}>\dfrac{1}{2008}\\ \Rightarrow\dfrac{1}{2005}-\dfrac{1}{2007}>0,\dfrac{1}{2006}-\dfrac{1}{2008}>0\\ \Rightarrow\dfrac{1}{2005}+\dfrac{1}{2006}-\dfrac{1}{2007}-\dfrac{1}{2008}>0\)

\(\left(a\right)\Rightarrow x-1< 0\Leftrightarrow x< 1\)

Vậy \(S=\left\{x|x< 1\right\}\)

DT
9 tháng 8

b) \(\dfrac{x-2}{2002}+\dfrac{x-4}{2000}< \dfrac{x-3}{2001}+\dfrac{x-5}{1999}\\ \Rightarrow\left(\dfrac{x-2}{2002}-1\right)+\left(\dfrac{x-4}{2000}-1\right)< \left(\dfrac{x-3}{2001}-1\right)+\left(\dfrac{x-5}{1999}-1\right)\\ \Rightarrow\dfrac{x-2004}{2002}+\dfrac{x-2004}{2000}< \dfrac{x-2004}{2001}+\dfrac{x-2004}{1999}\\ \Rightarrow\dfrac{x-2004}{2002}+\dfrac{x-2004}{2000}-\dfrac{x-2004}{2001}-\dfrac{x-2004}{1999}< 0\\ \)

\(\Rightarrow\left(x-2004\right)\left(\dfrac{1}{2002}+\dfrac{1}{2000}-\dfrac{1}{2001}-\dfrac{1}{1999}\right)< 0\left(b\right)\)

Nhận thấy: \(\dfrac{1}{2002}< \dfrac{1}{2001},\dfrac{1}{2000}< \dfrac{1}{1999}\Rightarrow\dfrac{1}{2002}-\dfrac{1}{2001}< 0,\dfrac{1}{2000}-\dfrac{1}{1999}< 0\\ \Rightarrow\dfrac{1}{2002}+\dfrac{1}{2000}-\dfrac{1}{2001}-\dfrac{1}{1999}< 0\)

\(\left(b\right)\Rightarrow x-2004>0\Leftrightarrow x>2004\)

9 tháng 8

\(a,\dfrac{x+2}{6}+\dfrac{x+5}{3}>\dfrac{x+3}{5}+\dfrac{x+6}{2}\\ < =>\left(\dfrac{x+2}{6}+1\right)+\left(\dfrac{x+5}{3}+1\right)>\left(\dfrac{x+3}{5}+1\right)+\left(\dfrac{x+6}{2}+1\right)\\ < =>\dfrac{x+8}{6}+\dfrac{x+8}{3}>\dfrac{x+8}{5}+\dfrac{x+8}{2}\\ < =>\dfrac{x+8}{5}+\dfrac{x+8}{2}-\dfrac{x+8}{6}-\dfrac{x+8}{2}< 0\\ < =>\left(x+8\right)\left(\dfrac{1}{5}+\dfrac{1}{2}-\dfrac{1}{6}-\dfrac{1}{3}\right)< 0\)

Mà: `1/5+1/2+1/6-1/3>0`

`=>x+8<0`

`<=>x<-8` 

\(\dfrac{x-2}{1007}+\dfrac{x-1}{1008}< \dfrac{2x-1}{2017}+\dfrac{2x-3}{2015}\\ < =>\left(\dfrac{x-2}{1007}-1\right)+\left(\dfrac{x-1}{1008}-1\right)< \left(\dfrac{2x-1}{2017}-1\right)+\left(\dfrac{2x-3}{2015}-1\right)\\ < =>\dfrac{x-1009}{1007}+\dfrac{x-1009}{1008}< \dfrac{2x-2018}{2017}+\dfrac{2x-2018}{2015}\\ < =>\dfrac{x-1009}{1007}+\dfrac{x-1009}{1008}-\dfrac{2\left(x-1009\right)}{2017}-\dfrac{2\left(x-1009\right)}{2015}< 0\\ < =>\left(x-1009\right)\left(\dfrac{1}{1007}+\dfrac{1}{1008}-\dfrac{2}{2017}-\dfrac{2}{2015}\right)< 0\)

Mà: `1/1006+1/1008-2/2017-2/2015>0`

`=>x-1009<0`

`<=>x<1009`

9 tháng 8

a/

Gọi x là số phút gọi thỏa mãn đề bài

\(32+\left(x-45\right).0,4=44+0,25x\)

\(\Leftrightarrow32+0,4x-18=44+0,25x\)

\(\Leftrightarrow0,15x=30\Rightarrow x=200\)

b/

+Nếu KH gọi 180 phút trong 1 tháng thì

Số tiền cho gói cước A là \(32+\left(180-45\right).0,4=86\) USD

Số tiền cho gói cước B là \(44+180.0,25=89\) USD

Trong trường hợp này chọn gói cước A có lợi hơn

+ Trường hợp KH gọi 500 phút thì

Số tiền cho gói cước A: \(32+\left(500-45\right).0,4=214\) USD

Số tiền cho gói cước B: \(44+500.0,25=169\) USD

Trong trường hợp này chọn gói cước B có lợi hơn