Bài 2: a) Vẽ trên cùng mặt phẳng tọa độ đồ thị của các hàm số sau: y = x + 2 và y = - 2x + 5 b) Tìm tọa độ giao điểm A của hai đồ thị nói trên.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B C H A E F I
a/
Ta có
\(\widehat{BAC}=90^o\) (góc nt chắn nửa đường tròn)
\(\Rightarrow AB\perp AC\Rightarrow AE\perp AC;HF\perp AC\left(gt\right)\) => AE//HF
\(AC\perp AB\Rightarrow AF\perp AB;HE\perp AB\left(gt\right)\) => AF//HE
=> AEHF là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)
Mà \(\widehat{BAC}=90^o\left(cmt\right)\)
=> AEHF là hình CN
b/
Xét tg vuông EHA và tg vuông ABC có
\(\widehat{EAH}=\widehat{ACB}\) (cùng phụ với \(\widehat{ABC}\) )
=> tg EHA đồng dạng với tg ABC
\(\Rightarrow\dfrac{AE}{AC}=\dfrac{HE}{AB}\)
Mà AEHF là hình CN (cmt) => HE=AF (cạnh đối HCN)
\(\Rightarrow\dfrac{AE}{AC}=\dfrac{AF}{AB}\Rightarrow AE.AB=AF.AC\left(dpcm\right)\)
c/
\(\widehat{BAC}=90^o\left(cmt\right)\)
d/
Xét tg vuông HFC có
\(HI=CI\left(gt\right)\Rightarrow FI=HI=CI=\dfrac{HC}{2}\) (trong tg vuông trung tuyến thuộc cạnh huyền bằng nửa cạnh huyền)
=> H; F; C cùng nằm trên đường tròn đường kính HC tâm I
=> đường tròn tâm I đường kính HC là đường tròn ngoại tiếp tg HFC
=> tg IHF cân tại I \(\Rightarrow\widehat{IFH}=\widehat{IHF}\)
Ta có
HF//AB (cùng vuông góc với AC) \(\Rightarrow\widehat{IHF}=\widehat{ABC}\) (góc đồng vị)
\(\Rightarrow\widehat{IFH}=\widehat{ABC}\) (1)
Xét tg vuông EAH và tg vuông HFE có
HE chung; AE=HF (cạnh đối hình CN) => tg EAH = tg HFE (Hai tg vuông có 2 cạnh góc vuông bàng nhau)
\(\Rightarrow\widehat{EAH}=\widehat{HFE}\)
Mà \(\widehat{EAH}=\widehat{ACB}\left(cmt\right)\)
\(\Rightarrow\widehat{HFE}=\widehat{ACB}\) (2)
Mà \(\widehat{ABC}+\widehat{ACB}=90^o\) (3)
Từ (1) (2) (3)
\(\Rightarrow\widehat{IFH}+\widehat{HFE}=\widehat{IFE}=\widehat{ABC}+\widehat{ACB}=90^o\)
=> EF là tiếp tuyến với (I)
B= \(\dfrac{2023}{2-x}\) biểu thức B xác định ⇔ \(2-x\) \(\ne\) 0; \(x\ne\) 2
Kết luận biểu thức B xác định khi và chỉ khi \(x\) ≠ 2
Thay x = 1 vào (d₁), ta có:
y = 3.1 + 2 = 5
Thay x = 1; y = 5 vào (d₂), ta có:
-2.1 - m = 5
⇔ -2 - m = 5
⇔ m = -2 - 5
⇔ m = -7
Vậy m = -7 thì (d₁) và (d₂) cắt nhau tại điểm có hoành độ bằng 1
Lời giải:
a. $(d)$ cắt trục tung tại điểm có tung độ $3$, tức là cắt trục tung tại điểm $(0;3)$
$(0;3)\in (d)$
$\Leftrightarrow 3=(m+2).0+2m^2+1$
$\Leftrightarrow 2m^2=2$
$\Leftrightarrow m^2=1$
$\Leftrightarrow m=\pm 1$
Khi $m=1$ thì ta có hàm số $y=3x+3$
Khi $m=-1$ thì ta có hàm số $y=x+3$
Bạn có thể tự vẽ 2 đths này.
b.
Để $(d)$ cắt $(d')$ thì: $m+2\neq 2m+2$
$\Leftrightarrow m\neq 0$
Lời giải:
b/
\(\sqrt{52-16\sqrt{3}}+\sqrt{(4\sqrt{3}-7)^2}=\sqrt{48+4-2\sqrt{48.4}}+|4\sqrt{3}-7|\)
\(=\sqrt{(4\sqrt{3}-2)^2}+|4\sqrt{3}-7|\\ =|4\sqrt{3}-2|+|4\sqrt{3}-7|\\ =4\sqrt{3}-2+7-4\sqrt{3}=5\)
c/
\(=\frac{\sqrt{10}+3}{(\sqrt{10}-3)(\sqrt{10}+3)}-\frac{\sqrt{10}(\sqrt{5}+\sqrt{2})}{\sqrt{5}+\sqrt{2}}\\ =\sqrt{10}+3-\sqrt{10}=3\)
a ) Ta có : AB , AC là tiếp tuyến của (O)
⇒AB⊥OB,AC⊥OC
⇒ˆABO+ˆACO=900+900=1800⇒ABOC nội tiếp
b ) Vì AB là tiếp tuyến của (O)
⇒ˆABE=ˆADB⇒ΔABE∼ΔADB(g.g)
⇒ABAD=AEAB⇒AB2=AE.AD
c ) Ta có : AC là tiếp tuyến của (O) ⇒ˆACE=ˆEBC
Mà BD // AC ⇒ˆECB=ˆEDB=ˆADB=ˆEAC
⇒ΔEAC∼ΔECB(g.g)⇒ˆCEA=ˆCEB
d ) Gọi CO∩BD=F
Vì BD // AC , OC⊥AC⇒CF⊥BD
⇒d(AC,BD)=CFVì AO = 3R , OB=R⇒AB=√OA2−OB2=2√2R⇒12BC.AO=AB.OC(=2SABOC)⇒BC=4√2R3 Ta có : ˆBAO=ˆBCO⇒ΔABO∼ΔCFB(g.g)⇒ABCF=AOCB=BOBF⇒2√2RCF=3R4√2R3⇒CF=16R9
Bạn viết rõ đề bài ra nhé.