Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{bc}{8a^2}+\dfrac{ca}{b^2}+\dfrac{ab}{c^2}\)
\(=\dfrac{\left(bc\right)^3+8\left(ca\right)^3+8\left(ab\right)^3}{8\left(abc\right)^2}\)
\(=\dfrac{\left(bc\right)^3+\left(2ca\right)^3+\left(2ab\right)^3}{8\left(abc\right)^2}\)
\(=\dfrac{\left(bc\right)^3+\left(2ab+2ca\right)^3-3.2ca.2ab\left(2ab+2ca\right)}{8\left(abc\right)^2}\)
\(=\dfrac{\left(bc\right)^3+\left(-bc\right)^3-3.2ca.2ab.\left(-bc\right)}{8\left(abc\right)^2}\)
\(=\dfrac{12\left(abc\right)^2}{8\left(abc\right)^2}=\dfrac{12}{8}\)
Ta có: 1262=126.126=(123+3).126=123.126+3.126=123.126+378
123.129= 123.(126+3)=123.126+123.3=123.126+369
Vì 378>369 nên 123.126+378>123.126+369
⇒ 1262>123.129 hay 123.129<1262
Ta có: a + b = 1
M = a3 + b3 + 3ab(a2 + b2) + 6a2b2(a + b)
= (a + b)3 - 3ab(a + b) + 3ab[(a + b)2 - 2ab] + 6a2 b2 (a + b)
= 1 - 3ab + 3ab(1 - 2ab) + 6a2 b2
= 1 - 3ab + 3ab - 6a2 b2 + 6a2 b2
= 1
nhwos tick nha :D
a) Để tính giá trị của biểu thức x^4 + y^4, ta có thể sử dụng công thức Newton về tổng lũy thừa của một đa thức. Theo công thức Newton, ta có: x^4 + y^4 = (x^2 + y^2)^2 - 2x^2y^2 Từ đó, ta có thể tính giá trị của biểu thức x^4 + y^4 theo a và b: x^4 + y^4 = (a^2 - 2b)^2 - 2(a - 2b)b b) Tương tự, để tính giá trị của biểu thức x^5 + y^5, ta có thể sử dụng công thức Newton về tổng lũy thừa của một đa thức. Theo công thức Newton, ta có: x^5 + y^5 = (x + y)(x^4 - x^3y + x^2y^2 - xy^3 + y^4) Từ đó, ta có thể tính giá trị của biểu thức x^5 + y^5 theo a và b: x^5 + y^5 = (a)(a^4 - a^3b + a^2b^2 - ab^3 + b^4)