K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2023

ĐKXĐ : \(x\ge\dfrac{1}{2}\)

Ta có \(x^7-2=x^2-2\sqrt{2x-1}\)

\(\Leftrightarrow x^2.\left(x^5-1\right)+2.\left(\sqrt{2x-1}-1\right)=0\)

\(\Leftrightarrow x^2.\left(x-1\right)\left(x^4+x^3+x^2+x+1\right)+\dfrac{4.\left(x-1\right)}{\sqrt{2x-1}+1}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\x^2.\left(x^4+x^3+x^2+x+1\right)+\dfrac{4}{\sqrt{2x-1}+1}=0\left(1\right)\end{matrix}\right.\)

Kết hợp ĐKXĐ ta dễ thấy phương trình (1) có VT > 0 

mà VP = 0

=> (1) vô nghiệm

Tập nghiệm phương trình S = {1}

21 tháng 4 2023

\(\left\{{}\begin{matrix}x^3-y^3=35\\2x^2+3y^2=4x-9y\left(1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y^3-x^3=-35\\3y^2+9y+2x^2-4x=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y^3-x^3=-35\\9y^2+27y+6x^2-12x=0\end{matrix}\right.\)

\(\Rightarrow\left(y^3+9y^2+27y\right)-\left(x^3-6x^2+12x\right)=-35\)

\(\Rightarrow\left(y^3+9y^2+27y+27\right)-\left(x^3-6x^2+12x-8\right)=0\)

\(\Rightarrow\left(y+3\right)^3-\left(x-2\right)^2=0\)

\(\Rightarrow\left(y-x+5\right)\left[\left(y+3\right)^2+\left(y+3\right)\left(x-2\right)+\left(x-2\right)^2\right]=0\)

*Với \(x=y+5\). Thay vào (1) ta được:

\(2\left(y+5\right)^2+3y^2=4\left(y+5\right)-9y\)

\(\Leftrightarrow2y^2+20y+50+3y^2=4y+20-9y\)

\(\Leftrightarrow5y^2+25y+30=0\Leftrightarrow y^2+5y+6=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y=-2\\y=-3\end{matrix}\right.\)

*\(y=-2\Rightarrow x=3\) ; \(y=-3\Rightarrow x=2\).

*Với \(\left(y+3\right)^2+\left(y+3\right)\left(x-2\right)+\left(x-2\right)^2=0\). Ta có:

\(\left(y+3\right)^2+\left(y+3\right)\left(x-2\right)+\left(x-2\right)^2\)

\(=\left[\left(y+3\right)+\dfrac{\left(x-2\right)}{2}\right]^2+\dfrac{3}{4}\left(x-2\right)^2\ge0\)

Dấu "=" xảy ra khi \(x=2;y=-3\)

Vậy \(x=2;y=-3\)

Thử lại ta có nghiệm (x;y) của hệ đã cho là \(\left(3;-2\right),\left(2;-3\right)\)

 

22 tháng 4 2023

các biện pháp để phát triển ngành giao thông vận tải biển:

-Hệ thống cảng biển được phát triển đồng bộ, hiện đại hóa, nâng công xuất

-Tăng cường mạnh mẽ các đội tàu biển

-Hình thành 3 cụm cơ khí đóng tàu lớn ở bắc,Trung,Nam

-Phát triển toàn diện các dịch vụ hàng hải, hệ thống hậu cần, các dịch vụ ở cảng,..

chucbanhoctot

#tranhuyentuanh

1. Cho nửa đường tròn (O, R), điểm C nằm trên nửa đường tròn. Kẻ các tiếp tuyến Ax, By tại A và B của nửa đường tròn. OC cắt Ax tại D, đường vuông góc với OC cắt nửa đường tròn tại E, cắt By tại F. a) Chứng minh: AD. BF không đổi và DF là tiếp tuyến của (O). b) AE cắt OC tại G, BC cắt OE tại H. Chứng minh: CH. CB = EG. EA và bằng giá trị không đổi. c) Gọi I là tiếp điểm của DF với (O). IG cắt BC...
Đọc tiếp

1. Cho nửa đường tròn (O, R), điểm C nằm trên nửa đường tròn. Kẻ các tiếp tuyến Ax, By tại A và B của nửa đường tròn. OC cắt Ax tại D, đường vuông góc với OC cắt nửa đường tròn tại E, cắt By tại F.

a) Chứng minh: AD. BF không đổi và DF là tiếp tuyến của (O).

b) AE cắt OC tại G, BC cắt OE tại H. Chứng minh: CH. CB = EG. EA và bằng giá trị không đổi.

c) Gọi I là tiếp điểm của DF với (O). IG cắt BC tại K, IH cắt AE tại L. Chứng minh: KL // CE và A, K, L, B cùng thuộc một đường tròn (đồng viên)

2. Cho nửa đường tròn (O, R), điểm C chạy trên đường tròn sao cho số đo cung AC không lớn hơn 90o. Kẻ các tiếp tuyến tại A và B của nửa đường tròn. OC cắt tiếp tuyến tại A tại D, đường vuông góc với OC cắt nửa đường tròn tại E, cắt tiếp tuyến tại B tại F. Tiếp tuyến tại C của nửa đường tròn cắt tiếp tuyến tại A tại M, tiếp tuyến tại E của nửa đường tròn cắt tiếp tuyến tại A tại N. AE cắt BC tại J. Chứng minh:

a) DF tiếp xúc với (O) và M, J, N thẳng hàng.

b) Gọi I là tiếp điểm của DF với (O). Chứng minh: MJ. JN \(\le\) DI. IF

c) Tìm quỹ tích của điểm J khi C di động mà thỏa mãn các điều kiện trong giả thiết.

3. Cho nửa đường tròn (O, R), P là điểm chính giữa của cung AB, điểm C chạy trên phần tư đường tròn chứa điểm A (C khác A và P). Kẻ các tiếp tuyến tại A và B của nửa đường tròn. OC cắt tiếp tuyến tại A tại D, đường vuông góc với OC cắt nửa đường tròn tại E, cắt tiếp tuyến tại B tại F.

a) Chứng minh: DF có đúng 1 điểm chung với (O).

b) Gọi I là điểm chung đó, AE cắt BC tại J, AE cắt OC tại G, BC cắt OE tại H. Chứng minh: ICGJ, IEHJ nội tiếp và CE vuông góc với IJ.

c) Gọi K và L là giao của đường tròn ngoại tiếp tứ giác ICGJ, IEHJ với CE. Chứng minh: GL. GI + HK. HI = GC2 + HE2 và tính diện tích lớn nhất của hình ICGJHE theo R.

d) Chứng minh: OG. OC + OH. OE \(\ge\) 2. OJ. OI. 

Cần các bạn giúp đỡ, đặc biệt là ý c, d của bài 3 ạ.

0

loading...

1
19 tháng 4 2023

giúp mình cần gấp

 

 

18 tháng 4 2023

Mình nghĩ được á bạn,nhưng môn Hoá của bạn phải trên 6 phẩy nha :vv

18 tháng 4 2023

Ta có \(\sqrt{a-1}+\dfrac{1}{\sqrt{a-1}}\) \(=\sqrt{a-1}+\dfrac{1}{4\sqrt{a-1}}+\dfrac{3}{4\sqrt{a-1}}\) \(\ge2\sqrt{\sqrt{a-1}.\dfrac{1}{4\sqrt{a-1}}}+\dfrac{3}{4\sqrt{a-1}}\) \(=1+\dfrac{3}{4\sqrt{a-1}}\).

Lập 2 BĐT tương tự rồi cộng vế theo vế, ta có

\(VT\ge3+\dfrac{3}{4}\left(\dfrac{1}{\sqrt{a-1}}+\dfrac{1}{\sqrt{b-1}}+\dfrac{1}{\sqrt{c-1}}\right)\)

\(\ge3+\dfrac{3}{4}.\dfrac{9}{\sqrt{a-1}+\sqrt{b-1}+\sqrt{c-1}}\) 

\(\ge3+\dfrac{3}{4}.\dfrac{9}{\dfrac{3}{2}}\) \(=\dfrac{15}{2}\)

ĐTXR \(\Leftrightarrow a=b=c=\dfrac{5}{4}\). Ta có đpcm

18 tháng 4 2023

Có \(\sqrt{a-1}+\sqrt{b-1}+\sqrt{c-1}+\dfrac{1}{\sqrt{a-1}}+\dfrac{1}{\sqrt{b-1}}+\dfrac{1}{\sqrt{c-1}}\ge\dfrac{15}{2}\)

\(\Leftrightarrow\dfrac{1}{\sqrt{a-1}}+\dfrac{1}{\sqrt{b-1}}+\dfrac{1}{\sqrt{c-1}}\ge\dfrac{15}{2}-\left(\sqrt{a-1}+\sqrt{b-1}+\sqrt{c-1}\right)\ge6\) (1)

Ta chứng minh (1) đúng 

Áp dụng bất đẳng thức Schwarz : 

\(\dfrac{1}{\sqrt{a-1}}+\dfrac{1}{\sqrt{b-1}}+\dfrac{1}{\sqrt{c-1}}\ge\dfrac{\left(1+1+1\right)^2}{\sqrt{a-1}+\sqrt{b-1}+\sqrt{c-1}}\ge\dfrac{9}{\dfrac{3}{2}}=6\)Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\sqrt{a-1}=\sqrt{b-1}=\sqrt{c-1}\\\sqrt{a-1}+\sqrt{b-1}+\sqrt{c-1}=\dfrac{3}{2}\end{matrix}\right.\) 

\(\Leftrightarrow a=b=c=\dfrac{5}{4}\)(tm)