Cho hàm số \(f\left(x\right)=\sqrt{x+2m-1}+\sqrt{4-2m-\frac{x}{2}}.\)Xác định với mọi \(x\in\left[0;2\right]\)khi \(m\in\left[a;b\right]\) Tính giá trị của a+b.
Mọi người ơi giúp em câu này với ạ.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
30 đơn vị là j hả bạn
Mong bn xem lại giúp VNM
Hội con 🐄 chúc bạn học tốt!!!
Lấy điểm F sao cho DF // AM và F thuộc BC
Theo quy tắc hình bình hành ( AM//DF ; AD //MF)
\(\overrightarrow{AF}=\overrightarrow{AD}+\overrightarrow{AM}\)
Vì AMFD là hình bình hành nên \(\left|\overrightarrow{AD}\right|=\left|\overrightarrow{MF}\right|\Rightarrow BF=\frac{a}{2}+a=\frac{3a}{2}\)
Theo định lý Pytago ta có:
\(\left|\overrightarrow{AF}\right|^2=a^2+\left(\frac{3a}{2}\right)^2=a^2+\frac{9a^2}{4}=\frac{13a^2}{4}\)
\(\Rightarrow\left|\overrightarrow{AF}\right|=\sqrt{\frac{13a^2}{4}}=\frac{a\sqrt{13}}{2}\)
Dễ tính được \(AM=\frac{\sqrt{5}a}{2}\)
Ta thấy M là trung điểm của BC tức \(MB=MC=\frac{1}{2}BC=\frac{1}{2}AB\Rightarrow\widehat{AMB}=60^0\)
\(AD//BC\Rightarrow\widehat{DAC}=\widehat{AMB}=60^0\)
\(\Rightarrow\overrightarrow{AD}+\overrightarrow{AM}=\sqrt{a^2+\frac{5a^2}{4}-2\cdot a\cdot\frac{\sqrt{5}a}{2}\cdot\cos120}\)
\(\Rightarrow\overrightarrow{AD}+\overrightarrow{AM}=\sqrt{\frac{9a^2}{4}+\frac{\sqrt{5}a^2}{2}}=\sqrt{\frac{9a^2+2\sqrt{5}a^2}{4}}=\frac{a}{2}\sqrt{9+2\sqrt{5}}\)
Chắc vậy ạ
Sai thì thông cảm mk nha
Đặt: f(a;b;c) =\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)
Vai trò của a, b, c là như nhau có thể giả sử: \(a=max\left\{a,b,c\right\}\)
Ta có: \(f\left(a;b;\sqrt{ab}\right)=\frac{a}{a+b}+\frac{b}{b+\sqrt{ab}}+\frac{\sqrt{ab}}{\sqrt{ab}+a}\)
\(=\frac{a}{a+b}+\frac{\sqrt{b}}{\sqrt{b}+\sqrt{a}}+\frac{\sqrt{b}}{\sqrt{b}+\sqrt{a}}=\frac{a}{a+b}+\frac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)
Ta chứng minh:
\(f\left(a;b;c\right)\ge f\left(a;b;\sqrt{ab}\right)\ge\frac{7}{5}\)
+) Chứng minh: \(f\left(a;b;c\right)\ge f\left(a;b;\sqrt{ab}\right)\)
Xét : \(f\left(a;b;c\right)-f\left(a;b;\sqrt{ab}\right)=\frac{b}{b+c}+\frac{c}{a+c}-\frac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)
\(=\frac{b\left(a+c\right)\left(\sqrt{a}+\sqrt{b}\right)+c\left(b+c\right)\left(\sqrt{a}+\sqrt{b}\right)-2\sqrt{b}\left(b+c\right)\left(a+c\right)}{\left(b+c\right)\left(a+c\right)\left(\sqrt{a}+\sqrt{b}\right)}\)
\(=\frac{ab\sqrt{a}-ab\sqrt{b}+2bc\sqrt{a}-2ac\sqrt{b}+c^2\sqrt{a}-c^2\sqrt{b}}{\left(a+b\right)\left(b+c\right)\left(a+c\right)}\)
\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{ab}-c\right)^2}{\left(a+b\right)\left(b+c\right)\left(a+c\right)}\ge0\)vì a=max{a,b,c} => \(a\ge b\)
=> \(f\left(a;b;c\right)\ge f\left(a;b;\sqrt{ab}\right)\)(1)
+) Chứng minh:\(f\left(a;b;\sqrt{ab}\right)\ge\frac{7}{5}\)
Xét: \(f\left(a;b;\sqrt{ab}\right)-\frac{7}{5}=\frac{a}{a+b}+\frac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\frac{7}{5}\)\(=\frac{\frac{a}{b}}{\frac{a}{b}+1}+\frac{2}{\sqrt{\frac{a}{b}}+1}-\frac{7}{5}\)(2)
Đặt \(\sqrt{\frac{a}{b}}=x\left(đk:x\le3\right)\)Ta có:
(2)=\(\frac{x^2}{x^2+1}+\frac{2}{x+1}-\frac{7}{5}\)\(=\frac{5x^3+5x^2+10x^2+10-7x^3-7x^2-7x-7}{5\left(x^2+1\right)\left(x+1\right)}\)
\(=\frac{-2x^3+8x^2-7x+3}{5\left(x^2+1\right)\left(x+1\right)}=\frac{\left(3-x\right)\left(2x^2-2x+1\right)}{5\left(x^2+1\right)\left(x+1\right)}\ge0\)
=> \(f\left(a;b;\sqrt{ab}\right)\ge\frac{7}{5}\)(3)
Từ (1); (3) => \(f\left(a;b;c\right)\ge f\left(a;b;\sqrt{ab}\right)\ge\frac{7}{5}\)
"=" xảy ra <=> a=3; b=1/3; c=1 và các hoán vị
a) Giả sử:
\(\frac{a+b}{2}\ge\sqrt{ab}\)
\(\Rightarrow\frac{a^2+2ab+b^2}{4}\ge ab\)
\(\Rightarrow\frac{a^2+2ab+b^2}{4}-ab\ge0\)
\(\Rightarrow\frac{\left(a-b\right)^2}{4}\ge0\Rightarrow\left(a-b\right)^2\ge0\) (luôn đúng )
=> đpcm
b, Bất đẳng thức Cauchy cho các cặp số dương \(\frac{bc}{a}\)và \(\frac{ca}{b};\frac{bc}{a}\)và \(\frac{ab}{c};\frac{ca}{b}\)và \(\frac{ab}{c}\)
Ta lần lượt có : \(\frac{bc}{a}+\frac{ca}{b}\ge\sqrt[2]{\frac{bc}{a}.\frac{ca}{b}}=2c;\frac{bc}{a}+\frac{ab}{c}\ge\sqrt[2]{\frac{bc}{a}.\frac{ab}{c}}=2b;\frac{ca}{b}+\frac{ab}{c}\ge\sqrt[2]{\frac{ca}{b}.\frac{ab}{c}}\)
Cộng từng vế ta đc bất đẳng thức cần chứng minh . Dấu ''='' xảy ra khi \(a=b=c\)
c, Với các số dương \(3a\) và \(5b\), Theo bất đẳng thức Cauchy ta có \(\frac{3a+5b}{2}\ge\sqrt{3a.5b}\)
\(\Leftrightarrow\left(3a+5b\right)^2\ge4.15P\)( Vì \(P=a.b\))
\(\Leftrightarrow12^2\ge60P\)\(\Leftrightarrow P\le\frac{12}{5}\Rightarrow maxP=\frac{12}{5}\)
Dấu ''='' xảy ra khi \(3a=5b=12:2\)
\(\Leftrightarrow a=2;b=\frac{6}{5}\)