OLM cung cấp gói bải giảng điện tử PPT cho giáo viên đầu năm học
Thi thử và xem hướng dẫn giải chi tiết đề tham khảo 12 môn thi Tốt nghiệp THPT 2025
Tham gia cuộc thi "Nhà giáo sáng tạo" ẫm giải thưởng với tổng giá trị lên đến 10 triệu VNĐ
Mini game 20/11 tri ân thầy cô, nhận thưởng hấp dẫn - Tham gia ngay!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(Hà Nội)
Cho \(x,y>0\) thỏa mãn điều kiện \(x-\sqrt{x+6}=\sqrt{y+6}-y\). Tìm GTLN và GTNN của biểu thức \(P=x+y\).
(Bắc Giang)
Cho \(a,b,c\) là ba số dương. Chứng minh rằng
\(\frac{9a}{b+c}+\frac{25b}{c+a}+\frac{64c}{a+b}>30\).
Cho \(x,y,z\) là ba số dương thỏa mãn điều kiện \(xy+yz+zx=2016\). Chứng minh rằng
\(\sqrt{\frac{yz}{x^2+2016}}+\sqrt{\frac{zx}{y^2+2016}}+\sqrt{\frac{xy}{z^2+2016}}\le\frac{3}{2}\).
(Bình Định)
Cho \(A=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{120}+\sqrt{121}}\)
và \(B=1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{35}}\).
Chứng minh rằng \(B>A\).
Cho \(a,b,c\)là ba số dương thỏa mãn điều kiện \(a+b+c=3\). Chứng minh rằng
\(\frac{3+a^2}{b+c}+\frac{3+b^2}{c+a}+\frac{3+c^2}{a+b}\ge6\).
(Hải Phòng)
1) Cho \(a,b\)là hai số dương. Chứng minh rằng
\(3\left(b^2+2a^2\right)\ge\left(b+2a\right)^2\).
2) Cho \(a,b,c\)là ba số dương thỏa mãn điều kiện \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{1}{2}\). Chứng minh rằng
\(\frac{\sqrt{b^2+2a^2}}{ab}+\frac{\sqrt{c^2+2b^2}}{bc}+\frac{\sqrt{a^2+2c^2}}{ca}\ge\sqrt{3}\).
\(\frac{a^3+b^3}{2ab}+\frac{b^3+c^3}{2bc}+\frac{c^3+a^3}{2ca}\ge a+b+c\).
Tìm nghiệm nguyên của phương trình sử dụng điều kiện có nghiệm nguyên của phương trình bậc 2(a) x2+2y2+2xy+4x+9y+3=0x2+2y2+2xy+4x+9y+3=0(b) 2x4−2x2y+y2−64=0
(Hà Nam)
Cho \(x,y\) là hai số dương thỏa mãn điều kiện \(x+3y\le10\). Chứng minh rằng
\(\frac{1}{\sqrt{x}}+\frac{27}{\sqrt{3y}}\ge10\).
Khi nào xảy ra đẳng thức?
(Hòa Bình)
Cho \(a,b,c\) là ba số thỏa mãn các điều kiện \(0\le a,b,c\le2\) và \(a+b+c=3\). Chứng minh rằng \(a^2+b^2+c^2\le5\).