K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2023

Gợi ý cho em các ý:

MB gián tiếp: Giới thiệu về tác giả Nguyễn Thành Long và nhân vật anh thanh niên. 

Nguyễn Thành Long là cây bút tiêu biểu chuyên viết truyện và kí. Ông là nhà văn có lối viết nhẹ nhàng, lời văn gần gũi. Trong tác phẩm ''Lặng lẽ Sapa'', ông đã xây dựng thành công nhân vật anh thanh niên - chàng trai dành nhiều thời gian để cống hiến cho công việc một cách thầm lặng. Không chỉ là người luôn dành thời gian cho công việc, nhân vật anh thanh niên là một người luôn thể hiện sự hiếu khách khi đón chào ông họa sĩ và cô kĩ sư một cách nồng hậu và luôn quan tâm đến họ...

_mingnguyet.hoc24_ 

15 tháng 6 2023

Đặt \(gcd\left(a,b\right)=d\) và \(lcm\left(a,b\right)=m\) \(\left(d,m\inℕ^∗\right)\). Điều kiện đã cho tương đương \(d+m+a+b=ab\) \(\Leftrightarrow\dfrac{d}{ab}+\dfrac{m}{ab}+\dfrac{1}{a}+\dfrac{1}{b}=1\)   (1)

 Ta lại có \(dm=ab\) (mình sẽ chứng minh cái này sau) nên từ (1) ta có \(\dfrac{1}{m}+\dfrac{1}{d}+\dfrac{1}{a}+\dfrac{1}{b}=1\)     (2).

Do \(d\le b\le a\le m\) nên \(\dfrac{1}{m}\le\dfrac{1}{a}\le\dfrac{1}{b}\le\dfrac{1}{d}\). Kết hợp với (2), ta được \(1=\dfrac{1}{m}+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{d}\le\dfrac{4}{d}\) \(\Leftrightarrow d\le4\) hay \(d\in\left\{1,2,3,4\right\}\).

 Nếu \(d=1\) thì ta có \(\dfrac{1}{m}+\dfrac{1}{a}+\dfrac{1}{b}=0\), vô lí.

 Nếu \(d=2\) thì ta có \(\dfrac{1}{m}+\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{2}\), khi đó \(\dfrac{1}{2}=\dfrac{1}{m}+\dfrac{1}{a}+\dfrac{1}{b}\le\dfrac{3}{b}\) nên \(b\le6\) hay \(b\in\left\{1,2,3,4,5;6\right\}\). Dĩ nhiên \(b\) không thể là số lẻ do \(d=2\) là ước của b. Vậy thì \(b\in\left\{2,4,6\right\}\). Nếu \(b=2\) thì \(\dfrac{1}{m}+\dfrac{1}{a}=0\), vô lí. Nếu \(b=4\) thì \(\dfrac{1}{m}+\dfrac{1}{a}=\dfrac{1}{4}\le\dfrac{2}{a}\Leftrightarrow a\le8\) hay \(a\in\left\{1,2,3,4,5,6,7,8\right\}\). Do a cũng là số chẵn nên \(a\in\left\{2,4,6,8\right\}\), mà \(a\ge b\) nên suy ra \(b\in\left\{4,6,8\right\}\). Có \(b=4\) và \(b=6\) thỏa mãn. Nếu \(b=8\) thì \(\dfrac{1}{m}+\dfrac{1}{a}=\dfrac{3}{8}\le\dfrac{2}{a}\Leftrightarrow a\le\dfrac{16}{3}\Leftrightarrow a\le5\), mà \(a\ge b\) nên vô lí

 Nếu \(d=3\) thì \(\dfrac{1}{m}+\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{2}{3}\le\dfrac{3}{b}\) \(\Leftrightarrow b\le\dfrac{9}{2}\Leftrightarrow b\le4\) hay \(b\in\left\{1,2,3,4\right\}\). Mà \(b⋮3\) nên \(b=3\). Khi đó \(\dfrac{1}{m}+\dfrac{1}{a}=\dfrac{1}{3}\le\dfrac{2}{a}\Leftrightarrow a\le6\) Nhưng vì \(a⋮3\) nên \(a\in\left\{3,6\right\}\). Nếu \(a=3\) thì thử lại không thỏa mãn. Nếu \(a=6\) thì thỏa mãn.

 Nếu \(d=4\) thì \(\dfrac{1}{m}+\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{3}{4}\le\dfrac{3}{b}\) hay \(b\le4\). Mà \(b⋮4\) nên \(b=4\), từ đó suy ra \(\dfrac{1}{m}+\dfrac{1}{a}=\dfrac{1}{2}\le\dfrac{2}{a}\Leftrightarrow a\le4\), vì \(a⋮4\)  nên \(a=4\).

 Vậy ta tìm được các cặp số (4;4); (4;6); (6;3) thỏa ycbt.

 (*) Như mình đã hứa, mình sẽ chứng minh \(gcd\left(a,b\right).lcm\left(a,b\right)=ab\):

 Ta biết rằng 1 số tự nhiên N khác 0 bất kì có thể viết được dưới dạng \(N=p_1^{a_1}.p_2^{a_2}...p_n^{a_n}\) với \(p_i\left(i=\overline{1,n}\right)\) là các số nguyên tố đôi một phân biệt còn \(a_i\left(i=\overline{1,n}\right)\) là các số tự nhiên. 

 Trở lại bài toán, ta đặt \(a=p_1^{m_1}.p_2^{m_2}...p_k^{m_k}\) và \(b=p_1^{n_1}.p_2^{n_2}...p_k^{n_k}\). Khi đó, rõ ràng \(gcd\left(a,b\right)=p_1^{min\left\{m_1,n_1\right\}}.p_2^{min\left\{m_2,n_2\right\}}...p_k^{min\left\{m_k,n_k\right\}}\) và \(lcm\left(a,b\right)=p_1^{max\left\{m_1,n_1\right\}}.p_2^{max\left\{m_2,n_2\right\}}...p_k^{max\left\{m_k,n_k\right\}}\). Do đó \(gcd\left(a,b\right).lcm\left(a,b\right)=\prod\limits^k_{i=1}p_i^{min\left\{m_i,n_i\right\}+max\left\{m_i,n_i\right\}}=\prod\limits^k_{i=1}p_i^{m_i+n_i}=ab\) (kí hiệu \(\prod\limits^k_{i=1}A_i=A_1A_2...A_k\)

, ta có đpcm

15 tháng 6 2023

giúp mik 

 

14 tháng 6 2023

 P = A.B = \(\dfrac{x-7}{\sqrt{x}+2}=\dfrac{\left(x-4\right)-3}{\sqrt{x}+2}=\dfrac{\left(\sqrt{x}-2\right).\left(\sqrt{x}+2\right)-3}{\sqrt{x}+2}\)

\(=\sqrt{x}-2-\dfrac{3}{\sqrt{x}+2}\)

\(P\inℤ\) <=> x là số chính phương và \(\dfrac{3}{\sqrt{x}+2}\inℤ\)

mà \(\sqrt{x}+2\ge2\Rightarrow\dfrac{3}{\sqrt{x}+2}\inℤ\Leftrightarrow\sqrt{x}+2=3\)

\(\Leftrightarrow x=1\) (thỏa)

Vậy x = 1 thì P \(\inℤ\)

14 tháng 6 2023

2\(x\) + 5\(\sqrt{x}\) =  3 ( Đkxđ \(x\) ≥ 0)

    2\(x\) + 5\(\sqrt{x}\)  = 3

⇒2\(x\) + 5\(\sqrt{x}\) - 3 = 0

Đặt \(\sqrt{x}\) = y ( y > 0)

Ta có: 2\(x\) + 5\(\sqrt{x}\)  - 3 = 0

        ⇔2y2 + 5y - 3 = 0

           △ = 25 + 24 = 49 > 0

           y1 = ( -5 + \(\sqrt{49}\)) : 4 = \(\dfrac{1}{2}\)

          y2 = (-5 - \(\sqrt{49}\)): 4 = - 3 (loại)

          \(\Rightarrow\) \(\sqrt{x}\) = \(\dfrac{1}{2}\) ⇒ \(x\) = \(\dfrac{1}{4}\)

Vậy \(x\) = \(\dfrac{1}{4}\)

 

TH
Thầy Hùng Olm
Manager VIP
14 tháng 6 2023

loading...  

- Giống nhau:

+ Các tế bào mầm (noãn nguyên bào, tinh nguyên bào) đều thực hiện nguyên phân liên tiếp nhiều lần

+ Noãn bào bậc 1 và tinh bào bậc 1 đều thực hiện giảm phân để cho giao tử 

- Khác nhau:

 Phát sinh giao tử cái Phát sinh giao tử đực
- Noãn bào bậc 1 qua giảm phân I cho thể cực thứ nhất có kích thước nhỏ và noãn bào bậc 2 có kích thước lớn- Tinh bào bậc 1 qua giảm phân I cho hai tinh bào bậc 2 
- Noãn bào bậc 2 qua giảm phân II cho một thể cực thứ hai có kích thước bé và một tế bào trứng có kích thước lớn- Mỗi tinh bào bậc 2 qua giảm phân II cho hai tinh tử, các tinh tử phát triển thành tinh trùng
- Từ mỗi noãn bào bậc 1 qua giảm phân cho hai thể cực và một tế bào trứng, trong đó chỉ có trứng trực tiếp thụ tinh- Từ mỗi tinh bào bậc 1 qua giảm phân cho bốn tinh trùng, các tinh trùng này đều tham gia vào thụ tinh 
14 tháng 6 2023

Những dòng thơ trên gợi cho em những suy nghĩ rằng:

- Một hình ảnh người mẹ ham công tiếc việc luôn muốn được chăm chỉ làm việc để lo cho con nhiều thứ tốt hơn. Khi mẹ không còn việc gì làm thì mẹ cảm thấy mình không có hạnh phúc như thường ngày, lo lắng không được lo cho đứa con của mình chu toàn.

- Cảm xúc của một người con hiếu thảo hiểu cho suy nghĩ, tấm lòng, tình yêu thương của người mẹ mà có cảm giác "chợt lo sợ". 

- Đồng thời, câu thơ diễn đạt rất tinh tế từ "trổ bông" có sự liên kết cao với từ "cuối mùa", "hết vụ" làm cho lời thơ thêm nhịp điệu và ý thơ diễn đạt sâu sắc, hay hơn.

14 tháng 6 2023

Hiệu quả: tăng tính liên kết về hình ảnh của câu thơ qua hình ảnh hạt thóc vàng bé nhỏ và cánh đồng, từ đó gợi cảm xúc của tác giả với người mẹ của mình, cảm nhận được sự yêu thương chăm sóc và quan tâm từ mẹ. Đồng thời, câu thơ thêm sinh động và giàu cảm xúc hơn.

13 tháng 6 2023

\(\sqrt{x^2-x+2}=x\left(1\right)\)

Ta thấy : \(x^2-x+2>0\) nên không cần ĐKXĐ.

\(\left(1\right)\Leftrightarrow x^2-x+2=x^2\left(ĐK:x\ge0\right)\)

\(\Leftrightarrow x^2-x+2-x^2=0\)

\(\Leftrightarrow-x+2=0\)

\(\Leftrightarrow-x=-2\)

\(\Leftrightarrow x=2\left(tm\right)\)

Vậy pt có tập nghiệm : \(S=\left\{2\right\}\)

13 tháng 6 2023

\(\sqrt{x^2-x+2}=x\)

Bình phương 2 vế pt, ta được :

\(x^2-x+2=x^2\)

\(\Rightarrow x^2-x^2-x=-2\)
\(\Rightarrow-x=-2\)

\(\Rightarrow x=2\)

Thay giá trị trên vào pt, ta thấy \(x=2\) thỏa.

Vậy \(S=\left\{2\right\}\)

Bài 1

\(a,\)

- Thời điểm tập trung trên mặt phẳng xích đạo là kì giữa nguyên phân. \(\rightarrow\) \(2n\)\((NST\) \(kép)\)

- Thời điểm NST đơn của các tế bào đang có phân li về 2 cực là kì sau nguyên phân. \(\rightarrow\) \(4n (NST\) \(đơn)\)

- Gọi số tế bào ở kì giữa và kì sau lần lượt là: \(a\) và \(b\) tế bào.

- Theo bài ta có hệ: \(\left\{{}\begin{matrix}78a-156b=-1200\\78a+156b=2640\end{matrix}\right.\rightarrow\left\{{}\begin{matrix}a=9\\b=12\end{matrix}\right.\)

- Mình không rõ là đề bài có lỗi không? Nhưng $a$ và $b$ tính ra là số rất lẻ nên mình làm tròn.

\(b,\) Số tế bào con sau khi kết thúc nguyên phân lần lượt là: $9.2=18(tb)$ và $12.2=24(tb)$

\(c,\) Số NST môi trường cung cấp trong nguyên phân: \(2n.(2-1)=78(NST)\)

Bài 2

Số tâm động ở kì sau của nguyên phân: $4n=16$

Số cromati ở kì giữa của nguyên phân: $4n=16$

Số cromatit ở kì sau của nguyên phân: $0$

Số NST ở kì sau của nguyên phân: $4n=16(NST$ $đơn)$

DT
12 tháng 6 2023

Sửa đề : \(\dfrac{a^2}{a^2+b}+\dfrac{b^2}{b^2+a}\le1\\ \) (*)

\(< =>\dfrac{a^2\left(b^2+a\right)+b^2\left(a^2+b\right)}{\left(a^2+b\right)\left(b^2+a\right)}\le1\\ < =>a^2b^2+a^3+b^2a^2+b^3\le\left(a^2+b\right)\left(b^2+a\right)\) ( Nhân cả 2 vế cho `(a^{2}+b)(b^{2}+a)>0` )

\(< =>a^3+b^3+2a^2b^2\le a^2b^2+b^3+a^3+ab\\ < =>a^2b^2\le ab\\ < =>ab\le1\) ( Chia 2 vế cho `ab>0` )

Do a,b >0 

Nên áp dụng BDT Cô Si :

\(2\ge a+b\ge2\sqrt{ab}< =>\sqrt{ab}\le1\\ < =>ab\le1\)

Do đó (*) luôn đúng

Vậy ta chứng minh đc bài toán

Dấu "=" xảy ra khi : \(a=b>0,a+b=2< =>a=b=1\)

22 tháng 7 2023

a Sửa đề : Chứng minh \(\dfrac{a^2}{a^2+b}\)+\(\dfrac{b^2}{b^2+a}\)\(\le\) 1 ( Đề thi vào 10 Hà Nội).

Bất đẳng thức trên tương đương : 

\(\dfrac{a^2+b-b}{a^2+b}\)+\(\dfrac{b^2+a-a}{b^2+a}\)\(\le\)1

\(\Leftrightarrow\) 1 - \(\dfrac{b}{a^2+b}\)+ 1 - \(\dfrac{a}{b^2+a}\)\(\le\)1

\(\Leftrightarrow\)1 - \(\dfrac{b}{a^2+b}\) - \(\dfrac{a}{b^2+a}\)\(\le\)0

\(\Leftrightarrow\)\(\dfrac{b}{a^2+b}\)\(\dfrac{a}{b^2+a}\)\(\le\)-1

\(\Leftrightarrow\)\(\dfrac{a}{b^2+a}\)\(\dfrac{b}{a^2+b}\)\(\ge\)1

Xét VT = \(\dfrac{a^2}{ab^2+a^2}\)\(\dfrac{b^2}{a^2b+b^2}\)\(\ge\)\(\dfrac{\left(a+b\right)^2}{ab^2+a^2+a^2b+b^2}\) (Cauchy - Schwarz)

\(\dfrac{\left(a+b\right)^2}{ab\left(b+a\right)+a^2+b^2}\)

\(\ge\)\(\dfrac{\left(a+b\right)^2}{2ab+a^2+b^2}\)

\(\dfrac{\left(a+b\right)^2}{\left(a+b\right)^2}\)= 1

Vậy BĐT được chứng minh

Dấu '=' xảy ra \(\Leftrightarrow\)a = b = 1