abcdx4=dcba abcd=
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề thi đánh giá năng lực
Khi chạy bộ, chúng ta bị tác dunjg bởi các lực:
- Lực trọng trường
- Lực ma xát
- Lực cản không khí
- Lực cơ
Cô làm mẫu cho nhé
Em đăng kí nhận thưởng sự kiện tri ân quà mùng 8 tháng 3
Em đăng kí nhận thưởng bằng tiền mặt. Em cảm ơn cô và Olm ạ!
Đáp án: D.3
Giải thích:
Để tìm cực trị của hàm hợp \( g(x) = f(x^2 - 2x - 1) \), ta cần thực hiện các bước sau:
1. Tìm điểm cực trị của hàm số \( f(x^2 - 2x - 1) \).
2. Phân tích số điểm cực trị của \( f(x^2 - 2x - 1) \) dựa trên đồ thị của \( f'(x) \).
Trước hết, để tìm điểm cực trị của hàm số \( f(x^2 - 2x - 1) \), ta cần tìm đạo hàm của \( g(x) \), sau đó giải phương trình \( g'(x) = 0 \) để tìm các điểm mà đạo hàm bằng 0.
Đạo hàm của \( g(x) = f(x^2 - 2x - 1) \):
\[ g'(x) = f'(x^2 - 2x - 1) \cdot (2x - 2) \]
Bây giờ, ta cần giải phương trình \( g'(x) = 0 \) để tìm điểm mà \( g(x) \) có đạo hàm bằng 0:
\[ f'(x^2 - 2x - 1) \cdot (2x - 2) = 0 \]
Điều này có nghĩa là hoặc \( f'(x^2 - 2x - 1) = 0 \) hoặc \( 2x - 2 = 0 \).
\( 2x - 2 = 0 \) khi \( x = 1 \).
Sau khi tìm \( x \), ta cần kiểm tra xem các giá trị của \( x \) khi đặt vào \( f'(x^2 - 2x - 1) \) tạo ra bao nhiêu điểm cực trị trên đồ thị của \( f'(x) \). Số lượng điểm cực trị của hàm số \( f(x) \) khi nhân với hệ số 2x-2 là số lượng điểm cực trị của hàm số \( f(x) \) bị tịnh tiến sang phải 1 đơn vị. Điều này có nghĩa là số điểm cực trị của \( g(x) \) sẽ giống với số điểm cực trị của \( f(x) \).
Vậy, đáp án là \(\mathbf{D. 3}\).
P/s: Lỗi font hơi nhiều
Từ đồ thị \(\Rightarrow\) hàm \(f\left(x\right)\) có 1 cực trị tại \(x=2\)
\(g'\left(x\right)=\left(2x-2\right).f'\left(x^2-2x-1\right)\)
\(g'\left(x\right)=0\Rightarrow\left[{}\begin{matrix}2x-2=0\\f'\left(x^2-2x-1\right)=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x^2-2x-1=2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-1\\x=3\end{matrix}\right.\)
Vậy hàm \(g\left(x\right)\) có 3 cực trị
Từ đồ thị ta thấy \(f\left(x\right)\) có 1 cực trị \(x=-2\)
\(g'\left(x\right)=2x.f'\left(x^2-3\right)\)
\(g'\left(x\right)=0\Rightarrow2x.f'\left(x^2-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\f'\left(x^2-3\right)=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x^2-3=-2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=1\end{matrix}\right.\)
Hàm \(g\left(x\right)\) có 3 cực trị
F1: TLKG: 25%AA:50%Aa:25%aa
Tỉ lệ cây thuần chủng trong tổng số cây thân cao F1: 25%:(25%+50%) = 1/3
XS thu được 1 cây thuần chủng là:
\(\dfrac{1}{3}.\left(\dfrac{2}{3}\right)^2.C^1_3=\dfrac{4}{9}\)
Không có đáp án đúng
Đời con: A-B-dd = 16%
Xét cặp: Dd x Dd => Đời con: 25%dd
=> Đời con A-B- = 16% : 25% = 64%
=> aabb = 64% - 50% = 14%
=> Tần số hoán vị gen: f = 100% - (64% + 14%) = 22%
Chọn A
Để giải bài toán này, ta sẽ giải phương trình: ABCD x 4 = DCBA Ta biểu diễn số ABCD dưới dạng 1000A + 100B + 10C + D và số DCBA dưới dạng 1000D + 100C + 10B + A. Vậy phương trình trở thành: 1000A + 100B + 10C + D = 1000D + 100C + 10B + A Chuyển các thành phần về cùng một phía ta được: 999A - 90B - 90C + 999D = 0 999(A - D) - 90(B - C) = 0 Vì A, B, C, D là các chữ số từ 0 đến 9 nên ta có thể thử từng trường hợp để tìm ra kết quả. Dễ dàng thấy rằng A = 2, B = 1, C = 7, D = 8 thỏa mãn phương trình trên. Vậy số ABCD = 2178.