Tìm nghiệm nguyên dương x,y,z của pt
1/x+1/y+1/z=1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT AM-GM ta có:
\(\frac{1}{a}+\frac{1}{b}\ge\frac{2}{\sqrt{ab}}\)
\(\Leftrightarrow2\ge\frac{2}{\sqrt{ab}}\)
\(\Leftrightarrow1\ge\frac{1}{\sqrt{ab}}\)
\(\Leftrightarrow1\le\sqrt{ab}\)
\(\Leftrightarrow1\le ab\)
Dấu " = " xảy ra <=> a=b=1
\(P=a^3+b^3+a\left(b^2-6\right)+b\left(a^2-6\right)\)
\(\Leftrightarrow P=\left(a+b\right)\left(a^2-ab+b^2\right)+ab\left(a+b\right)-6\left(a+b\right)\)
\(\Leftrightarrow P=\left(a+b\right)\left(a^2-ab+b^2+ab-6\right)\)
\(\Leftrightarrow P=\left(a+b\right)\left(a^2+b^2-6\right)\)
Ta có: \(\left(a-b\right)^2\ge0\Leftrightarrow a^2+b^2\ge2ab\)
Dấu " = " xảy ra <=> a=b
Ta có: \(\frac{1}{a}+\frac{1}{b}=2\Leftrightarrow\frac{a+b}{ab}=2\Leftrightarrow a+b=2ab\)
Áp dụng:
\(P\ge2ab\left(2ab-6\right)\ge2.1\left(2-6\right)=2.\left(-4\right)=-8\)
Dấu " = " xảy ra <=> a=b=1
Vậy \(P_{min}=-8\Leftrightarrow a=b=1\)
Tham khảo nhé~
\(\left(\frac{1}{a}+a\right)+\left(\frac{1}{b}+b\right)-\left(a+b\right)\)
\(\ge2+2-\left(a+b\right)=4-\left(a+b\right)\)
Từ đây,ta có: \(2\ge4-\left(a+b\right)\Leftrightarrow a+b\ge2\)
(Biến đổi tương tự như kudo,ta sẽ được:)
\(P=\left(a+b\right)\left(a^2+b^2-6\right)\ge2\left(a^2+b^2-6\right)\)
\(=2a^2+2b^2-12=\left(1+1\right)\left(a^2+b^2\right)-12\)
Áp dụng BĐT Bunhiacopxki: \(P\ge\left(1+1\right)\left(a^2+b^2\right)-12\ge\left(a+b\right)^2-12\ge4-12=-8\)
Vậy ...
\(x^2+y^2\ge\frac{1}{2}\left(x+y\right)^2\)
\(\Leftrightarrow2x^2+2y^2\ge x^2+y^2+2xy\)
\(\Leftrightarrow x^2+y^2-2xy\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\ge0\)( luôn đúng )
Dấu " = " xảy ra <=> x=y
Áp dụng
\(x^2+y^2\ge\frac{1}{2}.\left(x+y\right)^2=\frac{1}{2}.3^2=4,5\)
Dấu " = " xảy ra <=> x=y=1,5
Ta có:\(\hept{\begin{cases}x^3+2y=1\\y^3+2x=-1\end{cases}}\)
\(\Rightarrow\left(x^3+y^3\right)+\left(2y+2x\right)=0\)
\(\Rightarrow\left(x+y\right)\left(x^2-xy+y^2\right)+2\left(x+y\right)=0\)
\(\Rightarrow\left(x+y\right)\left(x^2-xy+y^2+2\right)=0\)
đến đây dễ nha.
\(\frac{a}{b}+\frac{b}{a}\left(a,b\ne0\right)\)
\(\ge\frac{2b}{b}+\frac{b}{2b}=2+\frac{1}{2}=\frac{5}{2}\)(đpcm)
Dấu = xảy ra khi a = 2b <=> Min = 5/2
tth: thêm hộ cái điều kiện a,b dương
Đặt \(\frac{a}{b}=x\)
Ta có: \(a\ge2b\)
\(\Rightarrow\frac{a}{b}\ge2\)
\(\Leftrightarrow x\ge2\)
\(\frac{a}{b}+\frac{b}{a}=x+\frac{1}{x}=\frac{1}{4}x+\frac{1}{x}+\frac{3}{4}x\)
Áp dụng BĐT AM-GM ta có:
\(\frac{a}{b}+\frac{b}{a}\ge2.\sqrt{\frac{1}{4}.x.\frac{1}{x}}+\frac{3}{4}x\ge2.\frac{1}{2}+\frac{3}{4}.2=1+\frac{3}{2}=\frac{5}{2}\left(v\text{ì}x\ge2\right)\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}\frac{1}{4}x=\frac{1}{x}\\x=2\end{cases}\Leftrightarrow\hept{\begin{cases}x^2=4\\x=2\end{cases}}\Leftrightarrow}x=2\Leftrightarrow\frac{a}{b}=2\Leftrightarrow a=2b\)