K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 6 2023

Lời giải:
Gọi biểu thức trên là $A$

$4A=4a^2+4ab+4b^2-12a-12b+8064$

$=(4a^2+4ab+b^2)+3b^2-12a-12b+8064$

$=(2a+b)^2-6(2a+b)+(3b^2-6b)+8064$

$=(2a+b)^2-6(2a+b)+9+3(b^2-2b+1)+8052$

$=(2a+b-3)^2+3(b-1)^2+8052\geq 8052$

$\Rightarrow A\geq 2013$

Vậy $A_{\min}=2013$

29 tháng 6 2023

\(a,\left(x-1\right)\left(x-2\right)>\left(x-1\right)^2\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)-\left(x-1\right)^2>0\)

\(\Leftrightarrow\left(x-1\right)\left[\left(x-2\right)-\left(x-1\right)\right]>0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2-x+1\right)>0\)

\(\Leftrightarrow\left(x-1\right)\left(-1\right)>0\)

\(\Leftrightarrow x-1< 0\)

\(\Leftrightarrow x< 1\)

Vậy \(S=\left\{x|x< 1\right\}\)

\(b,\left(4x-1\right)\left(x^2+1\right)\left(-x+4\right)>0\)

\(\Leftrightarrow\left[{}\begin{matrix}4x-1>0\\x^2+1>0\forall x\left(x^2\ge0\forall x\right)\\-x+4>0\end{matrix}\right.\)

 

\(\Leftrightarrow\left[{}\begin{matrix}x>\dfrac{1}{4}\\x< 4\end{matrix}\right.\)

Vậy \(S=\left\{x|\dfrac{1}{4}< x< 4\right\}\)

1
28 tháng 6 2023

a)

`(2x-3)(x+4)>2(x^2 +1)`

`<=>2x^2 +8x-3x-12>2x^2 +2`

`<=>5x>14`

`<=>x>14/5`

//////////////////////l/////////////l---------->

                    `0`       `14/5`

 

b)

`(3x-1)/2-(5x+1)/3>4`

`<=>(9x-3)/6-(10x+2)/6>24/6`

`<=>9x-3-10x-2>24`

`<=>-x>29`

`<=>x<-29`

-------------l////////////////l////////////////////

               -29            0

28 tháng 6 2023

A=   +  +   +     

   =   +  +   +     

   =   + 2. + 2  +     

   = 3. + 2  +

`@` `\text {Ans}`

`\downarrow`

`x(1-x) + (x-1)^2`

`= x-x^2 + x^2 - 2x + 1`

`= (x-2x) + (-x^2 + x^2) + 1`

`= -x+1`

28 tháng 6 2023

x ( 1 - x ) + ( x - 1 )2 = x - x2 + x2 - 2x + 1 = -x + 1 = 1 - x

 

28 tháng 6 2023

Xem lại biểu thức P.

28 tháng 6 2023

loading...

Mình phải đi ăn nên chiều mình làm nốt câu d nhé

28 tháng 6 2023

Đề yc gì em?

27 tháng 6 2023

\(\dfrac{x-1}{x+2}+\dfrac{6x}{x^2-4}=\dfrac{x+1}{2-x}\left(dkxd:x\ne\pm2\right)\)

\(\Leftrightarrow\dfrac{x-1}{x+2}+\dfrac{6x}{\left(x-2\right)\left(x+2\right)}=-\dfrac{x+1}{x-2}\)

\(\Leftrightarrow\dfrac{\left(x-1\right)\left(x-2\right)+6x+\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=0\)

\(\Leftrightarrow x^2-2x-x+2+6x+x^2+2x+x+2=0\)

\(\Leftrightarrow2x^2+6x+4=0\)

\(\Leftrightarrow2x^2+2x+4x+4=0\)

\(\Leftrightarrow2x\left(x+1\right)+4\left(x+1\right)=0\)

\(\Leftrightarrow\left(2x+4\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+4=0\\x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\left(ktm\right)\\x=-1\left(tm\right)\end{matrix}\right.\)

Vậy \(S=\left\{-1\right\}\)

0