K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2019

O A B C M H F E D

a) 

Vì \(\widehat{HFB}+\widehat{HDB}=180^o\)=> Tứ giác BFHD nội tiếp

Vì \(\widehat{BFC}=\widehat{BEC}=90^o\)=> Tứ giác BFEC nội tiếp 

b) Xét tam giác BDH và tam giác BEC có: \(\widehat{BDH}=\widehat{BEC}=90^o\)\(\widehat{B_1}\)chung

=> Tam giác BDH đồng dạng tam giác BEC

=> \(\frac{BD}{BH}=\frac{BE}{BC}\)=> BD.BC=BE.BH

c) \(\widehat{BCM}=\widehat{BAM}\)( cùng chắn cung BM của đường tròn (O)) (1)

vì \(\widehat{ADC}=\widehat{CFA}=90^o\)=> Tứ giác AFDC nội tiếp

=> \(\widehat{FAD}=\widehat{FCD}\) hay \(\widehat{BAM}=\widehat{HCB}\) (2)

Từ (1) , (2) 

=> \(\widehat{BCM}=\widehat{BCH}\)=> CD là đường phân giác của tam giác HCM mà CD cũng là đường cao

=> HCM cân tại C=> D là trung điểm HM

c) Câu hỏi của Nguyễn Vy - Toán lớp 9 - Học toán với OnlineMath

Em tham khảo link này nhé!

6 tháng 6 2019

\(b,\)\(\sqrt{\frac{2}{x^2}}\)

Căn thức xác định \(\Leftrightarrow\frac{2}{x^2}\)thỏa mãn đkxđ

\(\Rightarrow x^2\ne0\)

\(\Rightarrow x\ne0\)

6 tháng 6 2019

a) \(\sqrt{\frac{-5}{x^2+6}}\)

Để biểu thức có nghĩa thì \(x^2+6< 0\)

Mà \(x^2\ge0\Rightarrow x^2+6\ge6\)(mâu thuẫn)

Vậy biểu thức này không xác định

6 tháng 6 2019

Đây nè:

https://vietnamnet.vn/vn/giao-duc/tuyen-sinh/dap-an-de-thi-tuyen-sinh-lop-10-mon-toan-nam-2019-cua-ha-noi-538099.html

6 tháng 6 2019

Mik chưa học đến lớp 9 nên ko có , sorry bn nha :)))
~ Hok tốt ~
#JH

6 tháng 6 2019

a)Ta có

    \(\sqrt{3}>0\)

       \(-12< 0\Rightarrow-12< \sqrt{3}\)

Chúc bạn

hok tốt

6 tháng 6 2019

a)Ta có

    \(\sqrt{3}>0\)

       \(-12< 0\Rightarrow-12< \sqrt{3}\)

Chúc bạn

hok tốt

6 tháng 6 2019

???????????????????????????????????

6 tháng 6 2019

\(2>\sqrt{3}\)

5 tháng 6 2019

cái chỗ suy ra P e kh hiểu lắm a chỉ e chi tiết với

6 tháng 6 2019

@Thế Vĩ@

\(P=\sqrt{2}.\frac{\sqrt{2020}-\sqrt{2}}{2}=\sqrt{2}.\frac{\sqrt{2}\left(\sqrt{1010}-1\right)}{2}=2.\frac{\sqrt{1010}-1}{2}=\sqrt{1010}-1\)

4 tháng 6 2019

A B C D E F O H K

Ta có điểm C nằm trên đường tròn (AB) nên ^ACB = 900 => BC vuông góc AE

Xét \(\Delta\)BAE: ^ABE = 900, BC vuông góc AE (cmt) => AB2 = AC.AE (Hệ thức lượng trong tam giác vuông)

Tương tự AB2 = AD.AF. Do đó AC.AE = AD.AF. Từ đây, tứ giác ECDF nội tiếp.

Xét \(\Delta\)ABF: O là trung điểm AB; H là trung điểm BF => OH là đường trung bình trong \(\Delta\)ABF => OH // AF

Lại có CD là đường kính của (O), A thuộc (O) nên ^CAD = 900 => AE vuông góc AF

Do vậy OH vuông góc AE. Kết hợp với AO vuông góc HE (tại B) suy ra O là trực tâm \(\Delta\)AEH

=> EO vuông góc AH => ^AKE = ^ABE = 900 => A,K,B,E cùng thuộc đường tròn (AE)

Ta thấy AB,CD,KE tại O. Khi đó, áp dụng hệ thức lượng đường tròn: OE.OK = OA.OB = OC.OD

=> C,K,D,E cùng thuộc 1 đường tròn hay K thuộc đường tròn (DCE)

Mà tứ giác ECDF nội tiếp (cmt) nên K thuộc đường tròn ngoại tiếp tứ giác ECDF (đpcm).

4 tháng 6 2019

o A D K C E B H F

Bài Toán trên có các câu hỏi a, b, c  thứ tự  để hướng dẫn làm bài

I)Chứng minh tứ giác ECDF nội tiếp

+) ACBD là hình chữ nhật  ( tự chứng minh)

=> \(\widehat{ABC}=\widehat{ADC}\)

mà \(\widehat{ABC}=\widehat{AEB}\)( cùng phụ góc CBE)

=> \(\widehat{ADC}=\widehat{AEB}=\widehat{CEF}\)

=> Tứ giác ECDF nội tiếp

II) Chứng minh Tứ giác KDBO  nội tiếp

Xét \(\Delta ABE\)và \(\Delta FBA\)

Hai tam giác trên đồng dạng ( tự chứng minh)

=> \(\frac{AB}{FB}=\frac{BE}{BA}\Leftrightarrow\frac{2.OB}{2.BH}=\frac{BE}{BA}\Leftrightarrow\frac{OB}{BH}=\frac{BE}{BA}\)(1)

Mặt khác \(\widehat{OBE}=\widehat{HBA}=90^o\)(2)

(1), (2) => \(\Delta OBE~\Delta HBA\)

=> \(\widehat{BEO}=\widehat{BAH}=\widehat{OAK}\)

=> Tứ giác BEAK nội tiếp 

=> \(\widehat{AKO}=\widehat{OBE}=90^o\)

=> \(\widehat{OKH}=90^o\)(1)

Xét tam giác BDF vuông tại D , DH là đường trung tuyến

=> DH=HB

=> \(\widehat{HDB}=\widehat{HBD}=\widehat{BCD}=\widehat{ADC}\)

=> \(\widehat{ODH}=\widehat{ODB}+\widehat{HDB}=\widehat{ODB}+\widehat{ADO}=\widehat{ADB}=90^o\)(2)

Ta lại có: \(\widehat{OBH}=90^o\)(3)

Từ (1), (2), (3) 

=> DKOBH cùng thuộc đường tròn đường kính OH

=> DKOB nội tiếp (4)

III) Chứng minh tứ giác DKCE nội tiếp 

Từ (4)  => \(\widehat{DKO}+\widehat{DBO}=180^o\)

Mặt khác : \(\widehat{DBO}=\widehat{DCA}\)và \(\widehat{DCA}+\widehat{DCE}=180^o\)

Từ 3 điều trên => \(\widehat{DKO}=\widehat{DCE}=\widehat{OCE}\)

=> Tứ giác DKCE nội tiếp 

Từ (I) và (III)

=> D, K, C, E , F cùng thuộc một đường tròn

=> K thuộc đường tròn ngoại tiếp tứ giác ECDF